- 1、本文档共9页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
几何体的外接球与内切球
1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
2、正多面体的内切球和外接球的球心重合。
3、正棱锥的内切球和外接球球心都在高线上,但不重合。
4、体积分割是求内切球半径的通用做法。
一、外接球
〔一〕多面体几何性质法
1、各顶点都在同一个球面上的正四棱柱的高为4,体积为16,那么这个球的外表积是
A.B.C.D.
小结此题是运用“正四棱柱的体对角线的长等于其外接球的直径〞这一性质来求解的.
2、一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,那么此球的外表积为。
〔二〕补形法
1、假设三棱锥的三个侧面两两垂直,且侧棱长均为,那么其外接球的外表积是.
2、设是球面上的四点,且两两互相垂直,假设,
那么球心到截面的距离是.
小结一般地,假设一个三棱锥的三条侧棱两两垂直,且其长度分别为,那么有.
3、三棱锥中,两两垂直,且,那么三棱锥外接球的外表积为〔〕
A.B.C.D.
4、三棱锥的四个顶点均在同一球面上,其中是正三角形平面那么该球的体积为〔〕
A.B.C.D.
答案及解析:
10.B
点评: 此题考察球的内接体与球的关系,考察空间想象能力,利用割补法结合球内接多面体的几何特征求出球的半径是解题的关键.
5、如图的几何体是长方体的一局部,其中
那么该几何体的外接球的外表积为
(A(B)(C)(D)
答案及解析:
12.【知识点】几何体的构造.G1
B解析:该几何体的外接球即长方体的外接球,而假设长方体的外接球半径为R,那么长方体的体对角线为2R,所以,所以该几何体的外接球的外表积,应选B.
【思路点拨】分析该几何体的外接球与长方体的外接球的关系,进而得结论.
6、一个几何体的三视图如下图,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,那么该几何体的外接球的外表积是〔〕
A.12π B. 4π C. 3π D. 12π
答案及解析:
14.
考点: 由三视图求面积、体积.
分析: 三视图复原几何体是四棱锥,扩展为正方体,它的体对角线,就是球的直径,求出半径,解出球的外表积.
解答: 解:由三视图知该几何体为四棱锥,记作S﹣ABCD,
其中SA⊥面ABCD.面ABCD为正方形,将此四棱锥复原为正方体,易知正方体的体对角线即为外接球直径,所以2r=.
∴S球=4πr2=4π×=3π.
答案:C
点评: 此题考察三视图求外表积,几何体的外接球问题,是根底题.
〔三〕寻求轴截面圆半径法
1、正四棱锥的底面边长和各侧棱长都为,都在同一球面上,那么此球的体积为.
小结根据题意,我们可以选择最正确角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.此题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
2、求棱长为a的正四面体P–ABC的外接球的外表积
3、三棱柱ABC﹣A1B1C1中,AA1=2且AA1⊥平面ABC,△ABC是边长为的正三角形,该三棱柱的六个顶点都在一个球面上,那么这个球的体积为〔〕
A. 8π B. C. D. 8π
答案及解析:
7.C
考点: 球的体积和外表积.
专题: 计算题;空间位置关系与距离.
分析: 根据题意,正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的体积.
解答: 解:由题意可知:正三棱柱的底面中心的连线的中点就是外接球的球心,
因为△ABC是边长为的正三角形,所以底面中心到顶点的距离为:1;
因为AA1=2且AA1⊥平面ABC,所以外接球的半径为:r==.
所以外接球的体积为:V=πr3=π×〔〕3=.
应选:C.
点评: 此题给出正三棱柱有一个外接球,在底面边长的情况下求球的体积.着重考察了正三棱柱的性质、正三角形的计算和球的体积公式等知识,属于中档题.
8.
4、三棱锥中,,,直线与底面所成角为,那么此时三棱锥外接球的体积为
A.B.C.D.
答案及解析:
11.D
〔四〕球心定位法
1、在矩形中,,沿将矩形折成一个直二面角,那么四面体的外接球的体积为
A.B.C.
文档评论(0)