中南大学结构力学(下)12 结构的极限荷载.ppt

中南大学结构力学(下)12 结构的极限荷载.ppt

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共25页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

塑性铰若截面弯矩达到极限弯矩,这时的曲率记作。意味着该截面两侧可以发生相对转角,形如一个铰链。称为塑性铰。塑性铰与铰的差别:1.塑性铰可承受极限弯矩;2.塑性铰是单向的;3.卸载时消失;4.随荷载分布而出现于不同截面。破坏机构结构由于出现塑性铰而形成的机构称为破坏机构。破坏机构可以是整体性的,也可能是局部的。12-3单跨超静定梁的极限荷载超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。Pl/2l/2PA截面先出现塑性铰,这时再增加荷载令将P代入,得逐渐加载法(增量法)从受力情况,可判断出塑性铰发生的位置应为A、C。利用极限状态的平衡可直接求出极限荷载。RBPu逐渐加载法(增量法)Pl/2l/2P或列虚功方程极限平衡法例:求图示等截面梁的极限荷载.已知梁的极限弯矩为Mu。因为是最大弯矩,l解:梁中出现两个塑性铰即为破坏机构,根据弹性分析,一个在A截面,设另一个在C截面。RB例:求图示变截面梁的极限荷载.已知AB段的极限弯矩为2Mu,BC段为Mu。这种情况不会出现。解:确定塑性铰的位置:l/3Pl/3l/3若B、D出现塑性铰,则B、D两截面的弯矩为Mu,若A出现塑性铰,再加荷载时,B截面弯矩减少D截面弯矩增加,故另一塑性铰出现于D截面。列虚功方程由前面例题可见:若分析出塑性铰的位置,由结构的极限状态的平衡即可求出极限荷载。同时也可推知超静定结构的极限荷载与结构的温度变化、支座移动等因素无关。12-4比例加载时有关极限荷载的几个定理比例加载---作用于结构上的所有荷载按同一比例增加,且不出现卸载的加载方式。求极限荷载相当于求P的极限值。结构处于极限状态时,应同时满足下面三个条件:1.单向机构条件;2.内力局限条件;3.平衡条件。可破坏荷载---同时满足单向机构条件和平衡条件的荷载。可接受荷载---同时满足内力局限条件和平衡条件的荷载。极限荷载既是可破坏荷载又是可接受荷载。1.基本定理:可破坏荷载恒不小于可接受荷载。比例加载时关于极限荷载的定理:证明:取任一可破坏荷载,给与其相应的破坏机构虚位移,列虚功方程取任一可接受荷载,在与上面相同虚位移上列虚功方程1.基本定理:可破坏荷载恒不小于可接受荷载。证明:取任一可破坏荷载,给与其相应的破坏机构虚位移,列虚功方程取任一可接受荷载,在与上面相同虚位移上列虚功方程2.唯一性定理:极限荷载是唯一的。证明:设同一结构有两个极限荷载和。若把看成可破坏荷载,看成可接受荷载。若把看成可破坏荷载,看成可接受荷载。故有3.上限定理(极小定理):极限荷载是所有可破坏荷载中最小的。证明:由于极限荷载是可接受荷载,由基本定理2.唯一性定理:极限荷载是唯一的。证明:设同一结构有两个极限荷载和。若把看成可破坏荷载,看成可接受荷载。若把看成可破坏荷载,看成可接受荷载。故有4.下限定理(极大定理):极限荷载是所有可接受荷载中最大的。证明:由于极限荷载是可破坏荷载,由基本定理列出所有可能的破坏机构,用平衡条件求出这些破坏机构对应的可破坏荷载,其中最小者既是极限荷载。定理的应用:穷举法:每次任选一种破坏机构,由平衡条件求出相应的可破坏荷载,再检验是否满足内力局限性条件;若满足,该可破坏荷载既为极限荷载;若不满足,另选一个破坏机构继续运算。试算法:极小定理的应用唯一性定理的应用例:求图示等截面梁的极限荷载。极限弯矩为Mu。Pl/3l/3Pl/3解:1.用穷举法求解共有三种可能的破坏机构Pl/3l/3Pl/3例:求图示等截面梁的极限荷载。极限弯矩为Mu。解:1.用穷举法求解共有三种可能的破坏机构:(1)A、B出现塑性铰(2)A、C出现塑性铰(3)B、C出现塑性铰例:求图示等截面梁的极限荷载。极限弯矩为Mu。PP解:(1)选A、B出现塑性铰形成的破坏机构2.用试算法求解由作出的弯矩图可见,C截面不满足内力局限性条件。(2)选A、C出现塑性铰形成的破坏机构由作出的弯矩图可见,满足内力局限性条件。例:求图示等截面梁的极限荷载.已知梁的极限弯矩为Mu。l解:用上限定理(极小定理)计算。12-6连续梁的极限荷载连续梁的破坏机构一跨单独破坏相邻跨联合破坏不会出现在各跨等截面、荷载方向相同条件下,破坏机构只能在各跨内独立形成。

文档评论(0)

niujiaoba + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档