2025届四川省绵阳市绵阳中学高三高考5月最后一次适应性考试数学试题含解析.docVIP

2025届四川省绵阳市绵阳中学高三高考5月最后一次适应性考试数学试题含解析.doc

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

2025届四川省绵阳市绵阳中学高三高考5月最后一次适应性考试数学试题

注意事项

1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,是方程的两个不等实数根,记().下列两个命题()

①数列的任意一项都是正整数;

②数列存在某一项是5的倍数.

A.①正确,②错误 B.①错误,②正确

C.①②都正确 D.①②都错误

2.已知数列满足,且成等比数列.若的前n项和为,则的最小值为()

A. B. C. D.

3.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()

A. B. C. D.

4.在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,,则,由棣莫弗定理可以导出复数乘方公式:,已知,则()

A. B.4 C. D.16

5.在中,角的对边分别为,若.则角的大小为()

A. B. C. D.

6.已知空间两不同直线、,两不同平面,,下列命题正确的是()

A.若且,则 B.若且,则

C.若且,则 D.若不垂直于,且,则不垂直于

7.设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()

A. B. C. D.

8.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为

A. B. C. D.

9.第24届冬奥会将于2022年2月4日至2月20日在北京市和张家口市举行,为了解奥运会会旗中五环所占面积与单独五个环面积之和的比值P,某学生做如图所示的模拟实验:通过计算机模拟在长为10,宽为6的长方形奥运会旗内随机取N个点,经统计落入五环内部及其边界上的点数为n个,已知圆环半径为1,则比值P的近似值为()

A. B. C. D.

10.已知函数,则方程的实数根的个数是()

A. B. C. D.

11.复数,若复数在复平面内对应的点关于虚轴对称,则等于()

A. B. C. D.

12.M、N是曲线y=πsinx与曲线y=πcosx的两个不同的交点,则|MN|的最小值为()

A.π B.π C.π D.2π

二、填空题:本题共4小题,每小题5分,共20分。

13.“直线l1:与直线l2:平行”是“a=2”的_______条件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).

14.已知向量,,,则__________.

15.已知双曲线的右准线与渐近线的交点在抛物线上,则实数的值为___________.

16.如图是一个算法的伪代码,运行后输出的值为___________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,两点为喷泉,圆心为的中点,其中米,半径米,市民可位于水池边缘任意一点处观赏.

(1)若当时,,求此时的值;

(2)设,且.

(i)试将表示为的函数,并求出的取值范围;

(ii)若同时要求市民在水池边缘任意一点处观赏喷泉时,观赏角度的最大值不小于,试求两处喷泉间距离的最小值.

18.(12分)已知函数在上的最大值为3.

(1)求的值及函数的单调递增区间;

(2)若锐角中角所对的边分别为,且,求的取值范围.

19.(12分)某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.方案①:将每个人的血分别化验,这时需要验1000次.方案②:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

(1)设方案②中,某组个人的每个人的血化验次数为,求的分布列;

(2)设,试比较方案②中,分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比

您可能关注的文档

文档评论(0)

182****1805 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档