数学教案-工程问题.pdfVIP

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

数学教案-工程问题

教学内容:九年义务教育六年制小学数学第十一册

第79页工程问题应用题

教学要求:

1.使学生掌握工程问题的特点和解答方法,并能解

答有关的简单实际问题。

2.培养学生分析解答应用题的能力,及迁移类推触

类旁通的能力。

教学重点:使学生掌握工程问题的特点和解题方法。

教学难点:工作总量用单位“1”表示及工作效率所

表示的含意。

教学手段:多媒体

教学过程:

一.设计情境,复习铺垫:

1.谈话:同学们,你发现最近我们南雄城发生了哪

些变化?

生答:略

师:如果我们要把新建沿江路人行道两边进行绿化。

①这项工程计划15天完成,平均每天完成几分之几?

②如果这项工程每天完成,几天可以完成全部工程?

2、导入新课:在日常生活中,像搞绿化、修马路、

盖房屋、造桥、运货等各种工作,统称为工程,今天我

们就一起来研究“工程问题”。

二.尝试探究、探讨新知:

1.谈话:如果我们将新建路两旁的绿化工程进行招

标,应聘单位有三个,他们都承诺能保质保量完成任务,

但甲工程队单独完成需10天,乙工程队单独完成需15

天,丙工程队单独完成需18天。请问:

①你选择哪个队施工?为什么?

②为了加快工程完成速度,又该做怎样的选择?

2.(投影)出示例题,进行研讨。

(1)要绿化30公顷土地,甲队单独完成要10天,

乙队单独完成要15天,两队合作,几天可以完成?

要求:①学生独立完成。

②分析题意:明确:30#247;10、30#247;15与

(30#247;10+30#247;15)各求出的是什么?怎样求合

作时间?

(2)把“30公顷”改为“10公顷”、“1公顷”。

这时分别怎样求合作时间?学生独立完成,并汇报。

板书:30#247;(30#247;10+30#247;15)=6天

10#247;(10#247;10+10#247;15)=6天

1#247;(1#247;10+1#247;15)=6天

问:通过这三个算式,你发现了什么?(工作总量在

变化可用的时间都一样)

怎样求出合作时间呢?

板书:工作总量#247;效率和=合作时间

为什么绿化面积加大了,可用的时间却都一样呢?

(3)(出示去掉具体绿化面积是多少的题目)

通过读题看看现在这道题与前面三道题有什么不同?

①、学生独立解答,相互交流。

②、弄清:表示什么?表示什么?

又表示什么?要求合作时间,为什么要用1#247;

(+)?

讨论:已知条件中去掉了具体的数量也能求出问题,

这种做法与前面具体的数量计算结果的方法比较,有什

么相同的地方与不同的地方?

不同:一是具体的工作总量,另一题是没有具体的

工作总量,而是用单位“1”表示。

相同:解题的思路是一致的,数量关系也相同,合

作时间=工作总量#247;工作效率和。

把全部工作量看作单位“1”是工程问题的特点,这

个“1”可代表一项工程,一块地,一堆煤,一段路程等

等。

再看一看:为什么绿化面积水逐渐加大,可用的时

间却都一样呢?

明确:工作总量虽然变化了,但每天完成工作量的

几分之几没有变。把工作量“30公顷”、“45公顷”、

“60公顷”都可以看作单位“1”,这三个算式实际就

是例题的后一种形式,所以工作时间不变。

三、综合应用、巩固提高:

(1)为了加快工程速度,三个工程队一起完成这项

工程需几天?

(2)根据上面给出的情境,绿化工程,甲队单独完

成需10天,乙队单独完成需10天,丙队单独完成需18

天。

大家提问,共同解答。

①甲乙合做几天完成全工程的一半?

②甲乙合做几天后,还剩全工程的?

③甲乙合做2天后,剩下的丙队来完成还需几天?

④甲、乙、丙合做3天后,还剩全部

文档评论(0)

150****6105 + 关注
实名认证
文档贡献者

硕士毕业生

1亿VIP精品文档

相关文档