2025高考数学一轮复习-9.3-成对数据的统计分析.pptxVIP

2025高考数学一轮复习-9.3-成对数据的统计分析.pptx

  1. 1、本文档共79页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

;ZHISHIZHENDUANJICHUHANGSHI;(1)相关关系

两个变量有关系,但又没有确切到可由其中的一个去精确地决定另一个的程度,这种关系称为相关关系.

(2)相关关系的分类:正相关和负相关.

(3)线性相关

一般地,如果两个变量的取值呈现正相关或负相关,而且散点落在__________附近,我们就称这两个变量线性相关.

一般地,如果两个变量具有相关性,但不是线性相关,那么我们就称这两个变量非线性相关或曲线相关.;(1)相关系数r的计算

变量x和变量y的样本相关系数r的计算公式如下:;(2)相关系数r的性质

①当r0时,称成对样本数据____相关;当r0时,成对样本数据____相关;当r=0时,成对样本数据间没有线性相关关系.

②样本相关系数r的取值范围为______________.

当|r|越接近1时,成对样本数据的线性相关程度越____;

当|r|越接近0时,成对样本数据的线性相关程度越____.;3.一元线性回归模型;(1)2×2列联表

一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其2×2列联表为;当χ2<xα时,我们没有充分证据推断H0不成立,可以认为X和Y独立.

这种利用χ2的取值推断分类变量X和Y是否独立的方法称为χ2独立性检验,读作“卡方独立性检验”,简称独立性检验.

下表给出了χ2独立性检验中几个常用的小概率值和相应的临界值;√;BCD;;;;5.(易错题)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样的方法从不同地区调查了100位育龄妇女,结果如下表.;根据小概率值α=0.01的独立性检验,可以得到的结论是

_______________________________.;6.若某商品的广告费支出x(单位:万元)与销售额y(单位:万元)之间有如下表所示的对应数据:;;KAODIANTUPOTIXINGPOUXI;;;;;;(1)依据数据的散点图可以看出,可用线性回归模型拟合y与x的关系,请计算相关系数并加以说明(若|r|0.75,则线性相关程度很高,可用线性回归模型拟合);;;(2)求y关于x的经验回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少.

附:相关系数;;例2某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(??位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.;;;;训练1下图是某地区2005年至2021年环境基础设施投资额y(单位:亿元)的折线图.;;;;例3某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):;;;(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,能否在犯错误的概率不超过0.05的前提下,认为一天中到该公园锻炼的人次与该市当天的空气质量有关?;;;;;FENCENGXUNLIANGONGGUTISHENG;;;A.4.2亿元 B.4.4亿元

C.5.2亿元 D.5.4亿元; ;;ABD;;6.(多选)某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下所示的列联表,经计算χ2≈4.762,则可以推断出();;;8.某市物价部门对本市的5家商场的某商品一天的销售量及其价格进行调查,5家商场的售价x(元/件)和销售量y(件)的数据如下表所示:;;;10.某城市地铁将于2023年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:;;(2)由以上统计数据填下面2×2列联表,依据小概率值α=0.01的独立性检验,可否认为“月收入以55百元为分界点对地铁定价的态度有差异”.;;;;;;12.在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是()

A.若χ2=6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌

B.由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌

C.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误

D.以上三种说法都不正确;;;根据数据特点,甲

您可能关注的文档

文档评论(0)

中小学教育 + 关注
实名认证
服务提供商

专注数十年中小学教育课件、试卷、练习、学案、教案等制作

1亿VIP精品文档

相关文档