高中数学数列专题训练6套含答案.docx

高中数学数列专题训练6套含答案.docx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共34页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

目录

第一套:等比数列例题精讲

第二套:等差等比数列基础试题一

第三套:等差等比数列基础试题二

第四套:等差等比数列提升试题一

第五套:等差等比数列提升试题二

第六套:数列的极限拓展

等比数列·例题解析

?

【例1】已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N*),那么数列{an}.

[]

A.是等比数列

B.当p≠0时是等比数列

C.当p≠0,p≠1时是等比数列

D.不是等比数列

分析由Sn=pn(n∈N*),有a1=S1=p,并且当n≥2时,

an=Sn-Sn-1=pn-pn-1=(p-1)pn-1

但满足此条件的实数p是不存在的,故本题应选D.

说明数列{an}成等比数列的必要条件是an≠0(n∈N*),还要注

【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.

解∵1,x1,x2,…,x2n,2成等比数列,公比q

∴2=1·q2n+1

x1x2x3…x2n=q·q2·q3…q2n=q1+2+3+…+2n

式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值.

∴a4=2

【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数x1,x2,…,xn,使得a,x1,x2,…,xn,b成等比数列,求

证明设这n+2个数所成数列的公比为q,则b=aqn+1

【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.

证法一∵a、b、c、d成等比数列

∴b2=ac,c2=bd,ad=bc

∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2

=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)

=a2-2ad+d2

=(a-d)2=右边

证毕.

证法二∵a、b、c、d成等比数列,设其公比为q,则:

b=aq,c=aq2,d=aq3

∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2

=a2-2a2q3+a2q6

=(a-aq3)2

=(a-d)2=右边

证毕.

说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.

【例6】求数列的通项公式:

(1){an}中,a1=2,an+1=3an+2

(2){an}中,a1=2,a2=5,且an+2-3an+1+2an=0

思路:转化为等比数列.

∴{an+1}是等比数列

∴an+1=3·3n-1∴an=3n-1

∴{an+1-an}是等比数列,即

an+1-an=(a2-a1)·2n-1=3·2n-1

再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,an-an-1=3·2n-2,这些等式相加,即可以得到

说明解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{an+1}是等比数列,(2)中发现{an+1-an}是等比数列,这也是通常说的化归思想的一种体现.

证∵a1、a2、a3、a4均为不为零的实数

∴上述方程的判别式Δ≥0,即

又∵a1、a2、a3为实数

因而a1、a2、a3成等比数列

∴a4即为等比数列a1、a2、a3的公比.

【例8】若a、b、c成等差数列,且a+1、b、c与a、b、c+2都成等比数列,求b的值.

解设a、b、c分别为b-d、b、b+d,由已知b-d+1、b、b+d与b-d、b、b+d+2都成等比数列,有

整理,得

∴b+d=2b-2d即b=3d

代入①,得

9d2=(3d-d+1)(3d+d)

9d2=(2d+1)·4d

解之,得d=4或d=0(舍)

∴b=12

【例9】已知等差数列{an}的公差和等比数列{bn}的公比都是d,又知d≠1,且a4=b4,a10=b10:

(1)求a1与d的值;

(2)b16是不是{an}中的项?

思路:运用通项公式列方程

(2)∵b16=b1·d15=-32b1

∴b16=-32b1=-32a1,如果b16是{an}中的第k项,则

-32a1=a1+(k-1)d

∴(k-1)d=-33a1=33d

∴k=34即b16是{an}中的第34项.

解设等差数列{an}的公差为d,则an=a1+(n-1)d

解这个方程组,得

∴a1=-1,d=2或a1=3,d=-2

∴当a1=-1,d=2时,an=a1+(n-1)d=2n-3

当a1=3,d=2时,an=a1+(n-1)d=5-2n

【例11】三个数成等比数列,若第二个数加4就成等差数列,再把

文档评论(0)

祝朝兵 + 关注
实名认证
内容提供者

原版文件原创

1亿VIP精品文档

相关文档