- 1、本文档共22页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
2、如图,AB是⊙O的直径,CD为弦,CD⊥AB于E,则下列结论中不成立的是()A、∠COE=∠DOEB、CE=DEC、OE=AED、BD=BC⌒⌒·OABECDC3.如图,⊙O的弦AB=8cm,直径CE⊥AB于D,DC=2cm,求半径OC的长.·OABECD解:连接OA,∵CE⊥AB于D,∴设OC=xcm,则OD=x-2,根据勾股定理,得解得x=5,即半径OC的长为5cm.x2=42+(x-2)2,3、如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB=cm。·OABE解:连接OA,∵OE⊥AB∴∴AB=2AE=16cm4、如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径。·OABE解:过点O作OE⊥AB于E,连接OA∴∴即⊙O的半径为5cm.问题:如图,AB是⊙O的弦∠OCA=300,OB=5cm,OC=8cm,求AB的长。OABC30°854D┌自学指导2:(6分钟)解:过圆心O作OD⊥AB于点D则AD=BD∴AB=2BD∵OD⊥AB,∠OCA=300,OC=8cm∴OD=OC=4cm在Rt△OBD中∴AB=2BD=6cm概念:过圆心作弦的长度,叫做弦心距。垂线段归纳:在垂径定理解决问题时,常用辅助线是作弦心距。总结:解决有关弦的问题,经常是过圆心作弦的弦心距,或作垂直于弦的直径,连接半径等辅助线,为应用垂径定理创造条件.小结:(2分钟)E垂径定理的几个基本图形:CD过圆心CD⊥AB于EAE=BEAC=BCAD=BD条件:结论:1.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证:四边形ADOE是正方形.D·OABCE证明:∴四边形ADOE为矩形,又∵AC=AB∴AE=AD∴四边形ADOE为正方形.自学检测2:(6分钟)2.已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。你认为AC和BD有什么关系?为什么?证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE。∴AE-CE=BE-DE即AC=BD..ACDBOE注意:解决有关弦的问题,常过圆心作弦的弦心距,或作垂直于弦的直径,它是一种常用辅助线的添法.1.已知:⊙O中弦AB∥CD,求证:AC=BD.⌒⌒.MCDABON证明:作直径MN⊥AB.∵AB∥CD,∴MN⊥CD.则AM=BM,CM=DM(垂直平分弦的直径平分弦所对的弧)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒当堂训练:(10分钟)2.如图,CD是⊙O的直径,弦AB⊥CD于E,CE=1,AB=10,求直径CD的长。·OABECD解:连接OA,∵CD是直径,OE⊥AB∴AE=0.5AB=5设OA=x,则OE=x-1,由勾股定理得x2=52+(x-1)2解得:x=13∴OA=13∴CD=2OA=26即直径CD的长为26.3.如图,点A、B是⊙O上两点,AB=8,点P是⊙O上的动点(P与A、B不重合),连接AP、BP,过点O分别作OE⊥AP于E,OF⊥BP于F,EF=。44.如图,CD为圆O的直径,弦AB交CD于E,∠CEB=30°,DE=8㎝,CE=4㎝,求弦AB的长。F解:连接AO,过圆心O作OF⊥AB于点F∵DE=8㎝,CE=4㎝,∴CD=DE+CD=8+4=12cm∴OA=OC=OD=6cm∴OE=OC-OE=6-4=2cm∵∠CEB=30°,∴∠OEF=30°∴OF=OE=1cm在Rt△AOF中,∵OF⊥AB∴AB=2AF=某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7.2m,过O作OC⊥AB于D,交圆弧于C,CD=2.4m,现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?FEAMCBNHDO拓展训练:(10分钟)24.1.2垂直于弦的直径第一课时24.1圆的有关性质第二十四章圆24.1.2垂直于弦的直径第一课时垂径定理1.了解圆是轴对称图形,理解垂径定理;2.运用垂径定理解决有关圆的问题.学习目标:(1分钟)
文档评论(0)