等式与不等式性质(第1课时)课件-高一数学必修第一册.pptxVIP

等式与不等式性质(第1课时)课件-高一数学必修第一册.pptx

  1. 1、本文档共43页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

第2章2.1等式与不等式性质(第1课时)人教A版2019必修第一册不等关系与不等式

目录CATALOG01.用不等式(组)表示不等关系03.典型例题分析02.作差法比较大小04.小结及随堂练习

学习目标能用不等式(组)表示实际问题中的不等关系.初步掌握用作差法比较两实数的大小.

01用不等式(组)表示不等关系不等关系与不等式

导入新知在现实世界与日常生活中,既有相等关系,又存在着大量的不等关系,两者都是基本的数量关系.

导入新知在数学中,我们用不等式来表示不等关系.文字语言数学符号文字语言大于>大于,高于,超过小于<小于,低于,少于大于或等于≥至少,不少于,不低于小于或等于≤至多,不多于,不超过

导入新知在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、高与矮、远与近、快与慢、涨与跌、轻与重、不超过或不少于等.类似于这样的问题,反映在数量关系上,就是相等与不等.相等用等式表示,不等用不等式表示.用不等号表示不等关系的式子文字语言大于高于超过多于小于低于少于大于等于至少不低于小于等于至多不多于不超过符号语言≥≤

学习新知你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40km/h;(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%;(3)三角形两边之和大于第三边、两边之差小于第三边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.问题1对于(1),设在该路段行驶的汽车的速度为vkm/h,则0v40.对于(2),由题意,得.

学习新知你能用不等式或不等式组表示下列问题中的不等关系吗?(1)某路段限速40km/h;(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%;(3)三角形两边之和大于第三边、两边之差小于第三边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.问题1对于(3),设△ABC的三条边为a,b,c,则a+bc,a-bc.对于(4),设C是直线AB外任意一点,CD垂直于AB,垂足为D,E是直线AB上不同于D的任意一点,则CDCE.

学习新知问题2你能用不等式或不等式组表示下列问题中的不等关系吗?某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本.如何定价才能使提价后的销售总收入不低于20万元?设提价后杂志的定价为x元,则销售的总收入为万元,那么不等关系“销售的收入不低于20万元”用不等式可以表示为:

学习新知如何解上述不等式呢?与解方程要用等式的性质一样,解不等式要用不等式的性质.为此,我们需要先研究不等式的性质.在初中我们已经通过具体实例归纳出了一些不等式的性质.那么,这些性质为什么是正确的?还有其他不等式的性质吗?回答这些问题要用到关于两个实数大小关系的基本事实.?关于实数a,b大小的比较,有以下基本事实:?如果a-b是正数,那么ab;如果a-b等于0,那么a=b;如果a-b是负数,那么ab.反之也成立.

学习新知?这个基本事实可以表示为:从上述基本事实可知:要比较两个实数的大小,可以转化为比较它们的差与0的大小.0是正数与负数的分界点,它为实数比较大小提供了“标杆”

总结新知等式性质与不等式性质等式性质不等式性质

认识新知图2.1-3是在北京召开的第24届国际数学大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.你能在这个图中找出一些相等关系和不等关系吗?

认识新知中国古代的数学家们不仅很早就发现并应用勾股定理,最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的证明。大正方形的构成:4个全等的直角三角形1个小正方形等面积法相等关系不等关系第24届国际数学家大会会标是根据赵爽弦图设计的.2.赵爽弦图的不等关系

认识新知2.赵爽弦图的不等关系(面积关系)大正方形面积4个直角三角形的面积和a,b0大正方形面积=4个等腰直角三角形的面积和Q:对于任意的实数a,b,a2+b2≥2ab成立吗?试证明。

认识新知作差法242.重要不等式

探究新知

探究新知

02作差法比较大小不等关系与不等式

应用新知分析:通过考查这两个多项式的差与0的大小关系,可以得出它们的大小关系.这里,我们借助多项式减法运算,得出了一个明显大于0的数(式).这是解决不等式问题的常用方法

文档评论(0)

校率学 + 关注
实名认证
文档贡献者

教师资格证持证人

精品中学PPT

领域认证该用户于2024年04月07日上传了教师资格证

1亿VIP精品文档

相关文档