数学必修二第一章知识点总结.docx

  1. 1、本文档共6页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

数学必修二第一章知识点总结

数学必修二第一章知识点总结

数学必修二第一章知识1一、集合(一)集合有关概念1.集合的含义

2.集合的中元素的三个特性:确定性、互异性、无序性

3.集合的表示:(1)常用数集及其记法(2)列举法(3)描述法

4、集合的分类:有限集、无限集、空集

5.常见集合的符号表示(二)集合间的基本关系

1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;

3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算

二、函数(一)函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:

解析法:必须注明函数的定义域;

图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.

优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.相同函数的判断:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.

求函数值域方法:(先考虑其定义域)

(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基

(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.

2.函数图象知识归纳

定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.

画法:描点法;图象变换法

常用变换方法有三种:平移变换;对称变换;3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射

对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.

5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质

1.函数的单调性(局部性质)(1)定义

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.p=

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质.(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

数学必修二第一章知识2

函数单调区间与单调性的判定方法

定义法:

任取x1,x2∈D,且x1x2;p=作差f(x1)-f(x2);

变形(通常是因式分解和配方);

定号(即判断差f(x1)-f(x2)的正负);

下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的

文档评论(0)

juan1388263 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档