高中数学选修1公开课件椭圆简单几何性质.pptxVIP

高中数学选修1公开课件椭圆简单几何性质.pptx

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

椭圆的简单几何性质

分母哪个大,焦点就在哪个轴上平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹标准方程不同点相同点图形焦点坐标定义a、b、c的关系焦点位置的判断xyF1F2POxyF1F2PO练习:P36T2,3,4

1、求满足下列椭圆的标准方程:(1)过点(2,3),且与椭圆9x2+4y2=36有共同的焦点。(2)a+c=10,b2=40。练习:思维挑战题:如图,已知圆B:(x+1)2+y2=16,及点A(1,0),C为圆B上任一点,求AC的垂直平分线与线段BC的交点P的轨迹方程.

1.顶点:椭圆和坐标轴的交点叫做椭圆的顶点椭圆有四个顶点(±a,0)、(0,±b)线段A1A2叫做椭圆的长轴,且长为2a,a叫做椭圆的长半轴长线段B1B2叫做椭圆的短轴,且长为2b,b叫做椭圆的短半轴长OxF1F2A2B1B2yA1(-a,0)(a,0)(0,b)(0,-b)为椭圆的焦距,为椭圆的半焦距

OxF1A2B1B2yA1(-a,0)(a,0)(0,b)(0,-b)a、b、c的几何意义acbF2

-a≤x≤a,-b≤y≤b知椭圆落在x=±a,y=±b组成的矩形中oyB2B1A1A2F1F2cab2、范围:

3、对称性:oyB2B1A1A2F1F2cab从图形上看,椭圆关于x轴、y轴、原点对称,原点是椭圆的中心.从方程上看:(1)把x换成-x方程不变,图象关于y轴对称;(2)把y换成-y方程不变,图象关于x轴对称;(3)把x换成-x,同时把y换成-y方程不变,图象关于原点成中心对称。

123-1-2-3-44y123-1-2-3-44y12345-1-5-2-3-4x12345-1-5-2-3-4x根据前面所学有关知识画出下列图形(1)(2)A1B1A2B2B2A2B1A1

4、椭圆的离心率(刻画椭圆扁平程度的量)椭圆的焦距与长轴长的比叫做椭圆的离心率。[1]离心率的取值范围:[2]离心率对椭圆形状的影响:0e1[3]e与a,b的关系:思考:当e=0时,曲线是什么?当e=1时曲线又是什么?1)e越接近1,c就越接近a,从而b就越小,椭圆就越扁2)e越接近0,c就越接近0,从而b就越大,椭圆就越圆圆线段F1F2

方程图形范围对称性顶点离心率xA2B2F2yOA1B1F1yOA1B1xA2B2F1F2两种标准方程的椭圆性质的比较关于x轴、y轴、原点对称A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)

例1求椭圆16x2+25y2=400的长轴和短轴长,离心率,焦点和顶点坐标。解:把已知方程化为标准方程椭圆的四个顶点是A1(-5,0)、A2(5,0)、B1(0,-4)、B2(0,4)离心率焦点F1(-3,0)和F2(3,0),因此长轴长,短轴长作业:P49T4

练习:求适合下列条件的椭圆的标准方程(1)焦点在X轴上,a=6,e=1/3;(2)经过点P(-3,0)、Q(0,-2);(3)长轴长等于20,离心率3/5。(2)解:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点,故a=3,b=2,故椭圆的标准方程为(3)或作业:P49T5

练:已知x轴上的一定点A(1,0),Q为椭圆上的动点,求AQ中点M的轨迹方程.MAQ2-2xOy解:设动点M的坐标为(x,y),则Q的坐标为(2x-1,2y)因为Q点为椭圆上的点所以有即所以点M的轨迹方程是

文档评论(0)

158****9376 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档