海南省海口市2024届高三下学期一模数学含答案.docx

海南省海口市2024届高三下学期一模数学含答案.docx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共12页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

机密★启用前

海口市2024届高三年级调研考试

数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在复平面内,对应的点位于()

A.第一象限 B.第二象限

C.第三象限 D.第四象限

2.已知,设甲:,乙:,则()

A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件

C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件

3.设,m是两条直线,,是两个平面,则()

A.若,,,则 B.若,,,则

C.若,,,则 D.若,,,则

4.已知椭圆:的2个焦点与椭圆:的2个焦点构成正方形的四个顶点,则()

A. B. C.7 D.5

5.某记者与参加会议的5名代表一起合影留念(6人站成一排),则记者站两端,且代表甲与代表乙不相邻的排法种数为()

A.72 B.96 C.144 D.240

6.已知函数的定义域为,是偶函数,当时,,则曲线在点处的切线斜率为()

A. B. C.2 D.-2

7.记的内角A,B,C的对边分别为a,b,c,若,则()

A. B. C. D.-2

8.已知是双曲线:的右焦点,直线与C交于A,B两点.若的周长为,则C的离心率为()

A. B. C. D.

二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。

9.已知甲、乙两组样本各有10个数据,甲、乙两组数据合并后得到一组新数据,下列说法正确的是()

A.若甲、乙两组数据的平均数都为a,则新数据的平均数等于a

B.若甲、乙两组数据的极差都为b,则新数据的极差可能大于b

C.若甲、乙两组数据的方差都为c,则新数据的方差可能小于c

D.若甲、乙两组数据的中位数都为d,则新数据的中位数等于d

10.已知函数(其中,,)的部分图象如图所示,则()

A. B.的图象关于点中心对称

C. D.在上的值域为

11.已知为正项数列的前项和,,,则()

A. B.

C. D.

三、填空题:本题共3小题,每小题5分,共15分。

12.已知集合,,若,则的取值范围是_________.

13.已知圆:,点P在直线:上,过点P作的两条切线,切点分别为A,B.当最大时,___________.

14.在正三棱台中,,,侧棱与底面所成角的正切值为.若存在一个球与该正三棱台的每个面都相切,则此正三棱台的体积为_________.

四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步骤。

15.(13分】

已知函数.

(1)讨论的单调性;

(2)若,求的取值范围.

16.(15分)

如图,在三棱柱中,平面平面,,四边形是边长为2的正方形.

(1)证明:平面;

(2)若直线与平面所成的角为30°,求二面角的余弦值.

17.(15分)

已知摊物线:的准线与轴的交点为,的焦点为F.经过点E的直线与分别交于A,B两点.

(1)设直线,的斜率分别为,,证明:;

(2)记与的面积分别为,,若,求.

18.(17分)

一次课外活动举行篮球投篮趣味比赛,选手在连续投篮时,第一次投进得1分,并规定:若某次投进,则下一次投进的得分是本次得分的两倍;若某次未投进,则该次得0分,且下一次投进得1分.已知某同学连续投篮n次,总得分为X,每次投进的概率为,且每次投篮相互独立,

(1)时,判断与20的大小,并说明理由;

(2)时,求的概率分布列和数学期望;

(3)记的概率为,求的表达式.

19.(17分

已知函数,等差数列的前项和为,记.

(1)求证:的图象关于点中心对称;

(2)若,,是某三角形的三个内角,求的取值范围;

(3)若,求证:.反之是否成立?并请说明理由.

机密启用前

海口市2024届高三年级调研考试

数学试题参考答案

一、选择题:本题共8小题,每小题5分。

题号

1

2

3

4

5

6

7

8

答案

D

B

B

A

C

C

B

A

二、选择题:本题共3小题,每小题6分,共18分。第9、11题每个正确选项2分;第10题每个正确选项3分。

题号

9

10

11

答案

ABD

AC

ABD

三、填空题:本题共3小题,每小题5分,共15分。

12.13.

您可能关注的文档

文档评论(0)

手可摘星陈 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档