- 1、本文档共48页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
3.1模拟退火算法及模型3.1.1物理退火过程3.1.2组合优化与物理退火的相似性3.1.3模拟退火算法的基本思想和步骤3.2模拟退火算法的马氏链描述3.2.1马尔可夫链3.2.2模拟退火算法与马尔可夫链3.3模拟退火算法的关键参数和操作的设计3.3.1状态产生函数3.3.2状态接受函数3.3.3初温3.3.4温度更新函数3.3.5内循环终止准则3.3.6外循环终止准则智能优化计算浙江大学
3.4模拟退火算法的改进3.4.1模拟退火算法的优缺点3.4.2改进内容3.4.3一种改进的模拟退火算法3.5模拟退火算法实现与应用3.5.130城市TSP问题(d*=423.741byDBFogel)3.5.2模拟退火算法在管壳式换热器优化设计中的应用智能优化计算浙江大学
3.1模拟退火算法及模型智能优化计算浙江大学算法的提出模拟退火算法最早的思想由Metropolis等(1953)提出,1983年Kirkpatrick等将其应用于组合优化。算法的目的解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学物理退火过程什么是退火:退火是指将固体加热到足够高的温度,使分子呈随机排列状态,然后逐步降温使之冷却,最后分子以低能状态排列,固体达到某种稳定状态。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学物理退火过程加温过程——增强粒子的热运动,消除系统原先可能存在的非均匀态;等温过程——对于与环境换热而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行,当自由能达到最小时,系统达到平衡态;冷却过程——使粒子热运动减弱并渐趋有序,系统能量逐渐下降,从而得到低能的晶体结构。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学数学表述在温度T,分子停留在状态r满足Boltzmann概率分布3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学数学表述在同一个温度T,选定两个能量E1E2,有在同一个温度,分子停留在能量小的状态的概率比停留在能量大的状态的概率要大。3.1.1物理退火过程10
3.1模拟退火算法及模型智能优化计算浙江大学数学表述若|D|为状态空间D中状态的个数,D0是具有最低能量的状态集合:当温度很高时,每个状态概率基本相同,接近平均值1/|D|;状态空间存在超过两个不同能量时,具有最低能量状态的概率超出平均值1/|D|;当温度趋于0时,分子停留在最低能量状态的概率趋于1。3.1.1物理退火过程能量最低状态非能量最低状态
3.1模拟退火算法及模型智能优化计算浙江大学Metropolis准则(1953)——以概率接受新状态固体在恒定温度下达到热平衡的过程可以用MonteCarlo方法(计算机随机模拟方法)加以模拟,虽然该方法简单,但必须大量采样才能得到比较精确的结果,计算量很大。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学Metropolis准则(1953)——以概率接受新状态若在温度T,当前状态i→新状态j若EjEi,则接受j为当前状态;否则,若概率p=exp[-(Ej-Ei)/kBT]大于[0,1)区间的随机数,则仍接受状态j为当前状态;若不成立则保留状态i为当前状态。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学Metropolis准则(1953)——以概率接受新状态p=exp[-(Ej-Ei)/kBT]在高温下,可接受与当前状态能量差较大的新状态;在低温下,只接受与当前状态能量差较小的新状态。3.1.1物理退火过程
3.1模拟退火算法及模型智能优化计算浙江大学相似性比较3.1.2组合优化与物理退火的相似性组合优化问题金属物体解粒子状态最优解能量最低的状态设定初温熔解
文档评论(0)