浙江省杭州市桐庐县分水高中2023-2024学年高三上数学期末教学质量检测试题含解析.docVIP

浙江省杭州市桐庐县分水高中2023-2024学年高三上数学期末教学质量检测试题含解析.doc

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

浙江省杭州市桐庐县分水高中2023-2024学年高三上数学期末教学质量检测试题

注意事项

1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.函数在内有且只有一个零点,则a的值为()

A.3 B.-3 C.2 D.-2

2.一个几何体的三视图如图所示,则这个几何体的体积为()

A. B.

C. D.

3.已知数列an满足:an=2,n≤5a1

A.16 B.17 C.18 D.19

4.在中,为上异于,的任一点,为的中点,若,则等于()

A. B. C. D.

5.若、满足约束条件,则的最大值为()

A. B. C. D.

6.设函数,当时,,则()

A. B. C.1 D.

7.已知是过抛物线焦点的弦,是原点,则()

A.-2 B.-4 C.3 D.-3

8.已知向量与向量平行,,且,则()

A. B.

C. D.

9.设,,,则、、的大小关系为()

A. B. C. D.

10.已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()

A. B. C. D.

11.已知是定义在上的奇函数,且当时,.若,则的解集是()

A. B.

C. D.

12.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()

A.2 B.5 C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知实数满足则点构成的区域的面积为____,的最大值为_________

14.学校艺术节对同一类的,,,四件参赛作品,只评一件一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“或作品获得一等奖”;乙说:“作品获得一等奖”;

丙说:“,两项作品未获得一等奖”;丁说:“作品获得一等奖”.

若这四位同学中有且只有两位说的话是对的,则获得一等奖的作品是______.

15.已知直线被圆截得的弦长为2,则的值为__

16.在中,内角的对边分别是,若,,则____.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)在平面直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)若射线与和分别交于点,求.

18.(12分)语音交互是人工智能的方向之一,现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司的“小爱同学”智能音箱和阿里巴巴的“天猫精灵”智能音箱,它们可以通过语音交互满足人们的部分需求.某经销商为了了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了100名购买“小爱同学”和100名购买“天猫精灵”的人,具体数据如下:

“小爱同学”智能音箱

“天猫精灵”智能音箱

合计

45

60

105

55

40

95

合计

100

100

200

(1)若该地区共有13000人购买了“小爱同学”,有12000人购买了“天猫精灵”,试估计该地区购买“小爱同学”的女性比购买“天猫精灵”的女性多多少人?

(2)根据列联表,能否有95%的把握认为购买“小爱同学”、“天猫精灵”与性别有关?

附:

0.10

0.05

0.025

0.01

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

19.(12分)已知中心在原点的椭圆的左焦点为,与轴正半轴交点为,且.

(1)求椭圆的标准方程;

(2)过点作斜率为、的两条直线分别交于异于点的两点、.证明:当时,直线过定点.

20.(12分)已知函数()

(1)函数在点处的切线方程为,求函数的极值;

(2)当时,对于任意,当时,不等式恒成立,求出实数的取值范围.

21.(12分)已知函数f(x)=x-1+x+2,记f(x)

(Ⅰ)解不等式f(x)≤5;

(Ⅱ)若正实数a,b满足1a+1

22.(10分)已知.

(1)若的解集为,求的值;

(2)若对任意,不等式恒成立,求实数的取值范围.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、A

【解析】

求出,对分类讨论,求出单调区间和极值点,结合三次函数的

您可能关注的文档

文档评论(0)

mooc + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档