浙江省杭州市浙大附中2023-2024学年高三数学第一学期期末学业水平测试试题含解析.docVIP

浙江省杭州市浙大附中2023-2024学年高三数学第一学期期末学业水平测试试题含解析.doc

  1. 1、本文档共20页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

浙江省杭州市浙大附中2023-2024学年高三数学第一学期期末学业水平测试试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.

对于下列说法:

①越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有;

③若某国家某年的劳伦茨曲线近似为,则;

④若某国家某年的劳伦茨曲线近似为,则.

其中正确的是:

A.①④ B.②③ C.①③④ D.①②④

2.二项式展开式中,项的系数为()

A. B. C. D.

3.在关于的不等式中,“”是“恒成立”的()

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()

A. B. C. D.

5.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()

A. B. C. D.

6.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()

A.1 B.2

C.3 D.4

7.已知集合,,则()

A. B.

C. D.

8.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()

A. B. C. D.1

9.某几何体的三视图如图所示,则该几何体的体积是()

A. B. C. D.

10.设,则“”是“”的()

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

11.已知函数的部分图象如图所示,则()

A. B. C. D.

12.已知为虚数单位,复数满足,则复数在复平面内对应的点在()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

二、填空题:本题共4小题,每小题5分,共20分。

13.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。

14.已知向量,且向量与的夹角为_______.

15.定义在上的奇函数满足,并且当时,则___

16.若,则______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)如图,四棱锥中,底面,,点在线段上,且.

(1)求证:平面;

(2)若,,,,求二面角的正弦值.

18.(12分)已知函数

(1)求函数的单调递增区间

(2)记函数的图象为曲线,设点是曲线上不同两点,如果在曲线上存在点,使得①;②曲线在点M处的切线平行于直线AB,则称函数存在“中值和谐切线”,当时,函数是否存在“中值和谐切线”请说明理由

19.(12分)在中,角,,所对的边分别为,,,且.

求的值;

设的平分线与边交于点,已知,,求的值.

20.(12分)已知等比数列中,,是和的等差中项.

(1)求数列的通项公式;

(2)记,求数列的前项和.

21.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.

22.(10分)已知.

(1)解不等式;

(2)若均为正数,且,求的最小值.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、A

【解析】

对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.

2、D

【解析】

写出二项式的通项公式,再分析的系数求解即可.

【详解】

二项式展开式的通项为,令,得,故项的系数为.

故选:D

【点睛】

本题主要考查了二项式定理的运算,属于基础题.

3、C

【解析】

讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.

文档评论(0)

mooc + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档