浙江省杭州市第四中学2024年高三上数学期末综合测试模拟试题含解析.docVIP

浙江省杭州市第四中学2024年高三上数学期末综合测试模拟试题含解析.doc

  1. 1、本文档共19页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

浙江省杭州市第四中学2024年高三上数学期末综合测试模拟试题

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为()

A. B. C. D.

2.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为()

A. B. C. D.

3.已知偶函数在区间内单调递减,,,,则,,满足()

A. B. C. D.

4.已知为非零向量,“”为“”的()

A.充分不必要条件 B.充分必要条件

C.必要不充分条件 D.既不充分也不必要条件

5.已知向量,,则向量与的夹角为()

A. B. C. D.

6.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()

A. B.

C. D.

7.函数的部分图象如图所示,则()

A.6 B.5 C.4 D.3

8.在中,,,分别为角,,的对边,若的面为,且,则()

A.1 B. C. D.

9.若直线与曲线相切,则()

A.3 B. C.2 D.

10.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()

A. B. C. D.

11.我们熟悉的卡通形象“哆啦A梦”的长宽比为.在东方文化中通常称这个比例为“白银比例”,该比例在设计和建筑领域有着广泛的应用.已知某电波塔自下而上依次建有第一展望台和第二展望台,塔顶到塔底的高度与第二展望台到塔底的高度之比,第二展望台到塔底的高度与第一展望台到塔底的高度之比皆等于“白银比例”,若两展望台间高度差为100米,则下列选项中与该塔的实际高度最接近的是()

A.400米 B.480米

C.520米 D.600米

12.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()

A.1 B.2

C.3 D.4

二、填空题:本题共4小题,每小题5分,共20分。

13.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.

14.在的展开式中的系数为,则_______.

15.已知复数,其中是虚数单位.若的实部与虚部相等,则实数的值为__________.

16.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知函数,,设.

(1)当时,求函数的单调区间;

(2)设方程(其中为常数)的两根分别为,,证明:.

(注:是的导函数)

18.(12分)已知函数,其中.

(1)当时,求在的切线方程;

(2)求证:的极大值恒大于0.

19.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.

(1)求证:是的中点;

(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.

20.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.

(1)求证:平面平面;

(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.

21.(12分)的内角的对边分别为,已知.

(1)求的大小;

(2)若,求面积的最大值.

22.(10分)已知公比为正数的等比数列的前项和为,且,.

(1)求数列的通项公式;

(2)设,求数列的前项和.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1、D

【解析】

利用三角函数的图象变换求得函数的解析式,再根据三角函数的性质,即可求解,得到答案.

【详解】

将将函数的图象向左平移个单位长度,

可得函数

又由函数为偶函数,所以,解得,

因为,当时,,故选D.

【点睛】

本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟记三角函数的图象变换,合理应用三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.

2、C

【解析】

分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.

【详解】

解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,,,则,,由,即,得.所以

=,所以当时

您可能关注的文档

文档评论(0)

mooc + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档