(完整word)MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc

(完整word)MATLAB求解SDP问题—使用SeDuMi和YALMIP.doc

  1. 1、本文档共4页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

(完整word)MATLAB求解SDP问题—使用SeDuMi和YALMIP

(完整word)MATLAB求解SDP问题—使用SeDuMi和YALMIP

(完整word)MATLAB求解SDP问题—使用SeDuMi和YALMIP

MATLAB求解SDP问题—使用SeDuMi和YALMIP

SDP(SemiDefinitePrograming,半定规划)是凸优化(ConvexOptimization)的一种,貌似近些年来比较热,反正这个东西常常出现在我看的论文中。论文里一般是把一个问题转化为SDP,然后极不负责任的扔了一句可以使用SeDuMi等工具箱解决就完事了,搞的本人非常迷茫,于是决定一探究竟,谁知还搞了个意外收获,那就是YALMIP工具箱。SeDuMi和YALMIP都是Matlab的工具箱,下载和安装请参见它们的主页。下面我就分别谈谈怎么样将两个工具箱应用于SDP求解吧。

SDP问题的对偶原型及求解步骤

下面就是一个典型的SDP问题:

目标函数是线性的,有一个等式约束,有一个不等式约束,最后一个是LMI(LinearMatrixInequality,线性矩阵不等式)约束。使用SeDuMi来解决此类问题,我们就要自行构造调用SeDuMi的核心函数sedumi(Att,bt,ct,K)的四个参数。

?*等式约束的个数

?*不等式约束的个数

?*LMI中矩阵的阶数

这样,我们就可以调用来求解了,其中的y即为优化后得到的最优解。

一个典型的例子

这里举一个简单的例子,并给出Matlab的实际代码,以便能更好地理解运用上节的知识。SDP的一个最简单的应用就是最大化矩阵的特征值问题.如我们要找使矩阵的特征值最大化,其中

分别为:

同时,我们对也给出一个不等式限制和一个等式限制:

那么这个问题可以描述成以下形式:

其中的取值分别为:

下面我们就可以使用sedumi函数进行优化求解了,给出Matlab代码:

最后得到的y即为最优解,它的前三个分量就是我们想要的答案.如下图所示:

HYPERLINK”http:///wordpress/wp-content/uploads/2010/09/sedumi.pn

YALMIP一出,谁与争锋

我们从上面也可以看到,SeDuMi的求解过程还是比较复杂的,不仅需要将优化问题先化成SDP的标准形式,而且参数的配置也相当费功夫,很不直观!在搜索SeDuMi的过程中,我又发现了一个叫YALMIP的工具箱,它的命名挺有意思,YetAnotherLMIPackage,又一个LMI包,呵呵,不过它可不是徒有虚名啊!简单的说,它可以非常直观的将目标函数和约束条件赋给它的核心函数solvesdp(Constraint,Objective),下面我们就看看解决同样的问题YALMIP是怎么操作的,废话不说了,直接上Matlab代码:

结果如下图所示:

可以看到两者的结果基本是一致的,当然,我怀疑YALMIP在操作的过程中有调用SeDuMi的可能性,但是不管怎么说,YALMIP的代码则更直观,更容易理解,甚至连双向不等式都可以直接书写,这都是明显的,可见它的牛逼,所以必然果断抛弃其他一切优化工具箱,你的意见呢?嘿嘿~

文档评论(0)

A女汉子~小郭 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档