《圆》全章复习与巩固—知识讲解(基础)[004].docVIP

《圆》全章复习与巩固—知识讲解(基础)[004].doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

专注:心无旁骛,万事可破

专注:心无旁骛,万事可破

PAGE/NUMPAGES

专注:心无旁骛,万事可破

《圆》全章复习与巩固—知识讲解(基础)

责编:常春芳

【学习目标】

1.通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;

2.理解圆及其有关概念,理解弧、弦、圆心角的关系;探索并了解点与圆、直线与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;

3.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;

4.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;

5.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积.

【知识网络】

【要点梳理】

要点一、旋转

1.旋转的概念:在平面内,一个图形绕着某一点O转动一个角度的图形变换叫做旋转.如下图,点O叫做旋转中心,转动的角叫做旋转角(如∠AOA′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.

要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.

2.旋转的性质:(1)对应点到旋转中心的距离相等(OA=OA′);

(2)两组对应点分别与旋转中心的连线所成的角相等,都等于旋转角;

(3)旋转中心是唯一不动的点;

(4)旋转前、后的图形全等(△ABC≌△).

要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.

3.旋转对称图形:在平面内,一个图形绕着一个定点旋转一定角度θ(0°<θ<360°)后,能够与原图形重合,这样的图形叫做旋转对称图形.

4.特殊的旋转—中心对称

(1)中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.

(2)中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

要点诠释:(1)中心对称图形指的是一个图形,而中心对称指的是两个图形的关系;

(2)线段,平行四边形,圆等等都是中心对称图形.

要点二、圆的基本性质

1.圆的定义

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合.

要点诠释:

①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;

②圆是一条封闭曲线.

2.圆的性质

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.

(3)垂径定理及推论:

①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

③弦的垂直平分线过圆心,且平分弦对的两条弧.

④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.

⑤平行弦夹的弧相等.

要点诠释:

在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)

3.圆的确定:不在同一直线上的三个点确定一个圆.

要点三、圆周角

1.圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.

2.圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.

推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.

推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.

要点诠释:

(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.

(2)圆周角定理成立的前提条件是在同圆或等圆中.

要点四、直线与圆的位置关系

1.直线和圆的位置关系

设⊙O半径为R,点O到直线的距离为.

(1)直线和⊙O没有公共点直线和圆相离.

(2)直线和⊙O有唯一公共点直线和⊙O相切.

(3)直

文档评论(0)

魏魏 + 关注
官方认证
文档贡献者

教师资格证持证人

该用户很懒,什么也没介绍

版权声明书
用户编号:5104001331000010
认证主体仪征市联百电子商务服务部
IP属地江苏
领域认证该用户于2023年10月19日上传了教师资格证
统一社会信用代码/组织机构代码
92321081MA26771U5C

1亿VIP精品文档

相关文档