- 1、本文档共19页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
2023年中考数学全等三角形的判定与性质知识回顾与专项练习题
(含答案解析)
知识回顾
1.三角形的三边关系:
三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:
三角形的三个内角之和等于180°。
3.三角形的外角定理:
三角形的一个外角等于它不相邻的两个内角之和。大于它不相邻的任意一个内角。
4.全等三角形的性质:
若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线
也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:
①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关
键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)
1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.
【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质
1
即可得解.
【解答】证明:∵∠3=∠4,
∴∠ACB=∠ACD,
在△ACB和△ACD中,
,
∴△ACB≌△ACD(ASA),
∴AB=AD.
2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=
CE.
【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全
等三角形的性质解答即可.
【解答】证明:∵△ABC是等腰三角形,
∴∠EBC=∠DCB,
在△EBC与△DCB中,
,
∴△EBC≌△DCB(SAS),
∴BD=CE.
3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,
∠C=50°,求∠D的大小.
2
【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质
即可求解.
【解答】解:∵∠BAD=∠EAC,
∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,
在△BAC与△EAD中,
,
∴△BAC≌△EAD(SAS),
∴∠D=∠C=50°.
4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.
(1)求证:△ABC≌△ADC;
(2)若AB=4,CD=3,求四边形ABCD的面积.
【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS
可得△ABC≌△ADC;
(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形
ABCD的面积是12.
【解答】(1)证明:∵AC平分∠BAD,
3
∴∠BAC=∠DAC,
∵CB⊥AB,CD⊥AD,
∴∠B=90°=∠D,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(AAS);
(2)解:由(1)知:△ABC≌△ADC,
∴BC=CD=3,S=S,
△A
文档评论(0)