福建省厦门二中2024届高三数学第一学期期末综合测试模拟试题含解析.docVIP

福建省厦门二中2024届高三数学第一学期期末综合测试模拟试题含解析.doc

  1. 1、本文档共21页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

福建省厦门二中2024届高三数学第一学期期末综合测试模拟试题

考生须知:

1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.己知抛物线的焦点为,准线为,点分别在抛物线上,且,直线交于点,,垂足为,若的面积为,则到的距离为()

A. B. C.8 D.6

2.已知复数z满足,则在复平面上对应的点在()

A.第一象限 B.第二象限 C.第三象限 D.第四象限

3.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().

A.6 B.5 C.4 D.3

4.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()

A.若,,则或

B.若,,,则

C.若,,,则

D.若,,则

5.函数,,的部分图象如图所示,则函数表达式为()

A. B.

C. D.

6.阅读如图的程序框图,运行相应的程序,则输出的的值为()

A. B. C. D.

7.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()

A.3 B. C.6 D.

8.定义在R上的偶函数满足,且在区间上单调递减,已知是锐角三角形的两个内角,则的大小关系是()

A. B.

C. D.以上情况均有可能

9.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()

A., B.,

C., D.,

10.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()

A.2 B. C. D.

11.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-x

A.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)

12.若,,则的值为()

A. B. C. D.

二、填空题:本题共4小题,每小题5分,共20分。

13.已知是第二象限角,且,,则____.

14.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为,中位数为n,则_________.

15.已知实数满足,则的最小值是______________.

16.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)已知函数,.

(1)当时,求不等式的解集;

(2)若函数的图象与轴恰好围成一个直角三角形,求的值.

18.(12分)追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:

AQI

空气质量

轻度污染

中度污染

重度污染

重度污染

天数

6

14

18

27

25

10

(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.

(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;

(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.

19.(12分)设椭圆E:(a,b0)过M(2,),N(,1)两点,O为坐标原点,

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由.

20.(12分)

(Ⅰ)证明:;

(Ⅱ)证明:();

(Ⅲ)证明:.

21.(12分)已知函数.

(1)求不等式的解集;

(2)若对任意恒成立,求的取值范围.

22.(10分)已知函数存在一个极大值点和一个极小值点.

(1)求实数a的取值范围;

(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)

参考答案

文档评论(0)

mooc + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档