第三章细胞生物学研究方法2013课件.ppt

第三章细胞生物学研究方法2013课件.ppt

  1. 1、本文档共36页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多

**细胞工程?细胞融合与细胞杂交技术单克隆抗体技术(1984年诺贝尔奖)?细胞拆合与显微操作技术**显微操作**第三章细胞生物学研究方法第一节细胞形态结构的观察方法第二节细胞组分的分析方法第三节细胞培养、细胞工程与显微操作技术第四节用于细胞生物学研究的模式生物**不同物种享有共同分子机制

人和鲸鱼性别决定基因序列的比较****问题如果一个有钱人出了2万元资助癌症的研究,可有一天他很惊讶的发现他的钱被用做酿酒酵母的研究,你作为研究人员,怎么向他解释呢?动物的细胞是很复杂的,酵母作为简单的真核细胞,可以作为模式生物来研究癌症发生的机制。分辨力是指显微镜(或人的眼睛距目标25cm处)能分辨物体最小间隔的能力,分辨力的大小决定于光的波长和镜口率以及介质的折射率.式中:n=介质折射率;α=镜口角(标本对物镜镜口的张角),N.A.=镜口率人眼的分辨力是0.2mm,所以一般显微镜设计的最大放大倍数通常为1000X。帮助他们获奖的是绿色荧光蛋白。这种蛋白为生物与医学实验带来革命,它发出的荧光像一盏明灯,帮助研究人员照亮生命体在分子层面和细胞层面的诸多反应。研究人员第一次能在活体细胞和活生生的动物身上同时研究基因与蛋白。首先发现绿色荧光蛋白的是生于1928年的下村修。他1962年从生活在美国西海岸近海的一种水母身上分离出了绿色荧光蛋白。沙尔菲指出绿色荧光蛋白的发光特性在生物示踪方面有极高价值中国著名科学家钱学森的堂侄,钱永健走出的可说是绿色荧光蛋白开发历程的“最后一步”,他在下村修与沙尔菲研究的基础上进一步搞清楚了绿色荧光蛋白特性。他改造绿色荧光蛋白,通过改变其氨基酸排序,造出能吸收、发出不同颜色光的荧光蛋白,其中包括蓝色、青色和黄色,并让它们发光更久、更强烈。在宣布获奖名单时,瑞典皇家科学院诺贝尔化学奖评审委员会主席贡纳尔·冯·海涅手持一支试管,内装用绿色荧光蛋白基因改造过的大肠杆菌。用紫外线照射后,试管发出绿色荧光。研究人员于2000年制造出了一只能发出绿色荧光的兔子。此后,研究人员造出了经过基因改造的绿色荧光猪,还产下了绿色荧光小猪崽。由于绿色荧光蛋白用紫外线一照就发出鲜艳绿光,研究人员将绿色荧光蛋白基因插入动物、细菌或其他细胞的遗传信息之中,让其随着这些需要跟踪的细胞复制,可“照亮”不断长大的癌症肿瘤、跟踪阿尔茨海默氏症对大脑造成的损害、观察有害细菌的生长在光学显微镜下无法看清小于0.2μm的细微结构,这些结构称为亚显微结构(submicroscopicstructures)或超微结构(ultramicroscopicstructures;ultrastructures)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜(transmissionelectronmicroscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。电子显微镜(图2-12)与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成。扫描电子显微镜(scanningelectronmicroscope,SEM,)于20世纪60年代问世,用来观察标本的表面结构。其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。为了使标本表面发射出次级电子,标本在固定、脱水后,要喷涂上一层重金属微粒,重金属在电子束的轰击下发出次级电子信号。原理:电子束通过轴对称电磁场时可以聚焦,如同光线通过透镜时可以聚焦一样,因此可以利用电子成像。通常以锇酸和戊二醛固定样品,以环氧树脂包埋,以热膨胀或螺旋推进的方式推进样品切片(图2-13),切片厚度20~50nm,一个直径20um的细胞可以切成几百片,故称超薄切片。切片采用重金属盐染色,以增大反差。第二节是本章的难点,部分属于仪器分析课程的内容。学生难以短时间内接受这么多的实验技术。而自己也缺

文档评论(0)

139****3710 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档