初二数学动点问题归类复习(含例题、练习及答案).docVIP

初二数学动点问题归类复习(含例题、练习及答案).doc

  1. 1、本文档共17页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

初二数学动点问题归类复习(含例题、练习及答案)

PAGE

PAGE1

=4的情形?若存在,求出对应的t值;若不存在请说明理由;

③在运动过程中,当△MON为直角三角形时,求t的值.

图1

思路点拨:

1.第(1)题说明△ABC是等腰三角形,暗示了两个动点M、N同时出发,同时到达终点.

2.不论M在AO上还是在OB上,用含有t的式子表示OM边上的高都是相同的,用含有t的式子表示OM要分类讨论.

3.将S=4代入对应的函数解析式,解关于t的方程.

4.分类讨论△MON为直角三角形,不存在∠ONM=90°的可能.

解答:

(1)直线与x轴的交点为B(3,0)、与y轴的交点C(0,4).

Rt△BOC中,OB=3,OC=4,所以BC=5.点A的坐标是(-2,0),所以BA=5.

因此BC=BA,所以△ABC是等腰三角形.

(2)①如图2,图3,过点N作NH⊥AB,垂足为H.

在Rt△BNH中,BN=t,,所以.

如图2,当M在AO上时,OM=2-t,此时

.定义域为0<t≤2.

如图3,当M在OB上时,OM=t-2,此时

.定义域为2<t≤5.

图2图3

②把S=4代入,得.

解得,(舍去负值).

因此,当点M在线段OB上运动时,存在S=4的情形,此时.

③如图4,当∠OMN=90°时,在Rt△BNM中,BN=t,BM,,

所以.解得.

如图5,当∠OMN=90°时,N与C重合,.

不存在∠ONM=90°的可能.

所以,当或者时,△MON为直角三角形.

图4图5

考点伸展:在本题情景下,如果△MON的边与AC平行,求t的值.如图6,当ON//AC时,t=3;如图7,当MN//AC时,t=2.5.

图6图7

三、平行四边形问题:因动点产生的平行四边形问题

例3:(2010年山西省中考第26题)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.

(1)求点B的坐标;

(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;

(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.

图1图2

思路点拨:1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础.

2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边.

解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.

在Rt△ABH中,AH=3,BA=,所以BH=6.因此点B的坐标为(3,6).

(2)因为OE=2EB,所以,,E(2,4).

设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得解得,.所以直线DE的解析式为.

(3)由,知直线DE与x轴交于点F(10,0),OF=10,DF=.

①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,),点N的坐标为(-5,).

②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).

③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.

由△NPO∽△DOF,得,即.解得,.此时点N的坐标为.

图3图4

考点伸展

如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.

图5图6

四、相似三角形:因动点产生的相似三角形问题

例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称

文档评论(0)

bookljh + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档