关于初二数学下册必备知识点归纳.pdfVIP

关于初二数学下册必备知识点归纳.pdf

  1. 1、本文档共8页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多

关于初二数学下册必备知识点归纳

初二数学下册必备知识点归纳

第一章分式

1、分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算

(1)分式的乘除

乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分

母。

除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减

加减法法则:同分母分式相加减,分母不变,把分子相加减;。

异分母分式相加减,先通分,变为同分母的分式,再加减。

3、整数指数幂的加减乘除法。

4、分式方程及其解法。

第二章反比例函数

1、反比例函数的表达式、图像、性质。

图像:双曲线。

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用。

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的

平方,那么这个三角形是直角三角形。

第四章四边形

1、平行四边形。

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;

对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形

性质:菱形的四条边都相等;

菱形的对角线互相垂直,并且每一条对角线平分一组对角;

菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;

对角线互相垂直的平行四边形是菱形;

四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱

形的所有性质。

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;

等腰梯形的两条对角线相等;

同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差。

初二数学下册必考知识点

1、直角三角形斜边上的中线等于斜边上的一半。

2、四边形的外角和等于360°。

3、等腰梯形性质定理:等腰梯形在同一底上的两个角相等。

4、同角或等角的余角相等。

5、过一点有且只有一条直线和已知直线垂直。

6、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

7、如果两条直线都和第三条直线平行,这两条直线也互相平行。

8、同位角相等,两直线平行。

9、同旁内角互补,两直线平行。

10、两直线平行,同位角相等。

二次根式知识点

(一)一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当

a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。

(二)二次根式的加减法

1.同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的

被开方数相同,就把这几个二次根式叫做同类二次根式。

2.合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同

类二次根式。

3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同

的进行合并。

(三)二次根式的乘除法

二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根

式。

一次函数知识点

(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其

中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

(二)一次函数的图像及性质

1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:

当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。

当k0,b0时,直线通过一、二、三象限;

当k0,b0时,直线通过一、三、四象限;

当k0,b0时,直线通过一、二、四象限;

当k0,b0时,直线通过二、三、四象限;

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像

文档评论(0)

. + 关注
官方认证
文档贡献者

专注于职业教育考试,学历提升。

版权声明书
用户编号:8032132030000054
认证主体社旗县清显文具店
IP属地河南
统一社会信用代码/组织机构代码
92411327MA45REK87Q

1亿VIP精品文档

相关文档