专题1.22 全等三角形几何模型(一线三垂直)(分层练习)(综合练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docxVIP

专题1.22 全等三角形几何模型(一线三垂直)(分层练习)(综合练)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共31页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
专题1.22 全等三角形几何模型(一线三垂直)(分层练习)(综合练) “一线三垂直”模型,是初中几何图形中的最重要模型,一般只要图形中出现一线三垂直或二垂或一垂图形,不管它是出现在全等图形中,还是在以后学习的相似图形中,函数图形中,它的辅助线、解题思路过程基本固定,一定要熟悉它的变化及用法。 “三垂直模型”是一个应用非常广泛的模型,它可以应用在三角形,矩形,平面直角坐标系,网格,一次函数,反比例函数,三角函数,二次函数以及圆等诸多的中考重要考点之中,所以掌握好这一模型会使你在中考中技高一筹。 其基本图形如下: 拓展:当一线三垂直模型中三垂直改成三等角时,同样成立 一、单选题 1.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a=8cm,则DE的长为(????) A.40cm B.48cm C.56cm D.64cm 2.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于(  ) A.6cm B.8cm C.10cm D.4cm 3.如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于(  ) A.3 B.2 C. D. 4.如图,,,于点E,于点D,,,则 的长是(????) A.8 B.4 C.3 D.2 5.如图,中, BP平分∠ABC, AP⊥BP于P,连接PC,若的面积为3.5cm2,的面积为4.5cm2,则的面积为(?????). A.0.25cm2 B.0.5 cm2 C.1cm2 D.1.5cm2 6.如图,中,,点在的边上,,以 为直角边在同侧作等腰直角三角形,使,连接,若,则与的数量关系式是(????) A. B. C. D. 7.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是(?????). A.cm2 B.cm2 C.cm2 D.cm2 二、填空题 8.如图,已知ABC是等腰直角三角形,∠ACB=90°,AD⊥DE于点D,BE⊥DE于点E,且点C在DE上,若AD=5,BE=8,则DE的长为 . 9.如图,一个等腰直角三角形ABC物件斜靠在墙角处(∠O=90°),若OA=50cm,OB=28cm,则点C离地面的距离是 cm. 10.如图,线段AB=8cm,射线AN⊥AB,垂足为点A,点C是射线上一动点,分别以AC,BC为直角边作等腰直角三角形,得△ACD与△BCE,连接DE交射线AN于点M,则CM的长为 . ?? 11.如图,在四边形中,,,点是上一点,连接、,若, ,则的长为 . ???? 12.如图,在中,,过点作,且,连接,若,则的长为 . 13.如图,在中,以为腰作等腰直角三角形和等腰直角三角形.连接 为边上的高线,延长交于点N,下列结论:(1);(2);(3);(4),其中正确的结论有 (填序号). 14.如图所示,中,.直线l经过点A,过点B作于点E,过点C作于点F.若,则 . ?? 15.如图,,且,且,请按照图中所标注的数据计算FH的长为 . 三、解答题 16.已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB=CD,求证:BC=DE. 17.王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合. (1)求证:; (2)求两堵木墙之间的距离. ?? 18.如图,,于点A,D是线段AB上的点,,. (1) 判断与的数量关系为   ,位置关系为   . (2) 如图2,若点D在线段的延长线上,点F在点A的左侧,其他条件不变,试说明(1)中结论是否成立,并说明理由. 19.如图,已知:在中,,,直线经过点,,. (1)当直线绕点旋转到图(1)的位置时,求证:; (2)当直线绕点旋转到图(2)的位置时,求证:; (3)当直线绕点旋转到图(3)的位置时,试问、、具有怎样的等量关系?请

文档评论(0)

大白艺daddy + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档