2018全国Ⅱ理科数学高考真题.docx

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
全国二——理科数学 2018年普通高等学校招生全国统一考试 理科数学 本试卷共23题,共150分,共5页。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1. A. B. C. D. 2.已知集合A={(x,y)|x 2+y 2≤3,x∈Z,y∈Z},则A中元素的个数为 A.9 B.8 C.5 D.4 3.函数f(x)=e 2-e-x/x 2的图像大致为 A. B. C. D. 4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)= A.4 B.3 C.2 D.0 5.双曲线x 2/a 2-y 2/b 2=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为 A.y=±x B.y=±x C.y=± D.y=± 6.在中,cos=,BC=1,AC=5,则AB= A.4 B. C. D.2 7.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入 A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为 A. B. 10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是 A. B. C. D. π 11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)= A.-50??? B.0??? C.2?? ? D.50 12.已知F1,F2是椭圆C: =1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为 A.. ??? B. ??? C. ??? D. 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线y=2ln(x+1)在点(0,0)处的切线方程为________。 14.若x,y满足约束条件则z=x+y的最大值为_________。 15.已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=________。 16.已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°,若△SAB的面积为,则该圆锥的侧面积为________。 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12分) 记Sn为等差数列{an}的前n项和,已知a1=-7,S1=-15。 (1)求{an}的通项公式; (2)求Sn,并求Sn的最小值。 18.(12分) 下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型。根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:=99+17.5t。 分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; 你认为用哪个模型得到的预测值更可靠?并说明理由。 19.(12分) 设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,| AB|=8。 求l的方程; 求过点A,B且与C的准线相切的圆的方程。 20.(12分) 如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点。 (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且二面角M-PA-C为30°,求PC与平面PAM所成角的正弦值。 21、(12分) 已经函数f(x)=ex-ax2。 (1)若a=1,证明:当x≥?0时,f(x)≥?1; (2)若f(x)在(0,+∞)只有一个零点,求a。 (二)选考题:共10分,请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。 22、[

文档评论(0)

苏菲老师 + 关注
实名认证
内容提供者

小学英语老师一枚

1亿VIP精品文档

相关文档