- 1、本文档共22页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
摘要:本文介绍了深度不连续性预测编码的方法以及在回环边界重建过滤中的应用。通过结合K-means聚类和内循环边界重建过滤来实现图层的压缩和传输增强,从而辅助解码器预测宏观块中含有的旋律,采用这种方法可以有效地提高解码器的处理速度。\n\n注:这个文档未包含详细的思考过程和结论,也没有提供相关的关键词。此外,由于篇幅限制,无法生成完整的概述。建议增加描述性的段落和总结性句子来进一步深化读者的理解。
Depth Coding using Depth Discontinuity Prediction
and in-loop Boundary Reconstruction Filtering
Reuben A. Farrugia #1, Maverick Hili ∗2
# Department of CCE, University of Malta
1 reuben.farrugia@.mt
2
—This paper presents a depth coding strategy that the authors in [12], [13] exploit the similarity between depth
employs K-means clustering to segment the sequence of depth and texture to improve the rate distortion performance.
images into K clusters. The resulting clusters are losslessly This work presents a novel depth map compression algo-
compressed and transmitted as supplemental enhancement infor-
mation to aid the decoder in predicting macroblocks containing rithm which employs a depth discontinuity prediction strat-
depth discontinuities. This method further employs an in-loop egy and an in-loop filter which were integrated within the
boundary reconstruction filter to reduce distortions at the edges. H.264/AVC and H.264/MVC coding standards. Simu-
The proposed algorithm was integrated within both H.264/AVC lation results demonstrate a significant gain in performance
and H.264/MVC coding standards. Simulation results relative to H.264/AVC, H.264/MVC and the method presented
demonstrate that the proposed scheme outperforms the state of
the art depth coding schemes, where rendered Peak Signal to in [11]. The encoding complexity was reased by around
Noise Ratio (PSNR) gains between 0.1 d
文档评论(0)