- 1、本文档共9页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高中数学必修二
·空间几何体
1。1 空间几何体的结构
棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边
形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、
五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如
五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行
且相等;平行于底面的截面是与底面全等的多边形。
棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,
由这些面所围成的几何体
分类: 以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、
五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点
到截面距离与高的比的平方.
棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间
的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、
五棱台等
表示:用各顶点字母,如四棱台ABCD—AB ’CD
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的
曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面
圆的半径垂直;④侧面展开图是一个矩形。
1
圆锥
定义: 以直角三角形的一条直角边为旋转轴,旋转一周所成的
曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面
展开图是一个扇形。
圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之
间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形.
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的
几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等
于半径。
1。2 空间几何体的三视图和直观图
1.中心投影与平行投影
中心投影:把光由一点向外散射形成的投影叫做中心投影。
平行投影:在一束平行光照射下形成的投影叫做平行投影.
2.三视图
正视图:从前往后
侧视图:从左往右
俯视图:从上往下
画三视图的原则:长对齐、高对齐、宽相等
3 。直观图:斜二测画法
斜二测画法的步骤:
(1)。平行于坐标轴的线依然平行于坐标轴;
(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;
(3)。画法要写好 。
1。3 空间几何体的表 面积与体积
(1)几何体的表 面积为几何体各个面的面积的和。
(2)特殊几何体表 面积公式 (c 为底面周长,h 为高,为斜高,l 为母线)
2
(3)柱体、锥体、台体的体积公式
球体的表面积和体积公式:V= ; S=
·空间点、直线、平面的位置关系
公理1 :如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:经过不在同一条直线上的三点,有且只有一个平面.
推论:一直线和直线外一点确定一平面;
两相交直线确定一平面;
两平行直线确定一平面。
公理2 及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据
公理3 :如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a 。
符号语言:
作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理4:平行于同一条直线的两条直线互相平行
空间两条直线的位置关系
位置关系
文档评论(0)