电力系统分析课件于永源第十章.pptxVIP

  1. 1、本文档共23页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第十章 电力系统的静态稳定性第十章 电力系统的静态稳定性第一节 电力系统静态稳定性的基本概念第二节 小扰动法的基本原理和在分析电力系统静态 稳定性中的应用第三节 调节励磁对电力系统静态稳定性的影响第四节 电力系统电压、频率及负荷的稳定性第五节 保证和提高电力系统静态稳定性的措施 第十章 电力系统的静态稳定性第一节 电力系统静态稳定性的基本概念一、电力系统静态稳定的定性分析简单电力系统:该系统的等值网络:其功-角特性关系为(10-1) 第十章 电力系统的静态稳定性P090 180(o )c功-角特性曲线,如下图所示。下面分析在a、b两点运行时受到微小扰动后的情况 1.静态稳定的分析扰动使,,如图10-2(a)中实线所示如图10-2(a)中虚线所示 第十章 电力系统的静态稳定性2.静态不稳定的分析扰动使,如图10-2(b)中实线所示,a,如图10-2(b)中虚线所示a’°aa’°’t=0(a) ° °t(b)t t=0图10-2 功率角的变化过程(a) 在a点运行; (b) 在b点运行 第十章 电力系统的静态稳定性90 1800(o )二、电力系统静态稳定的实用判据根据 可以判断同步发电机并列运行的静态稳定性。称整步功率系数,如下图所示。三、静态稳定的储备静态稳定储备系数正常运行时,为15%~20%;事故后不应小于10%。 第十章 电力系统的静态稳定性第二节 小扰动法的基本原理和在分析电力系统静态稳定性中的应用一、小扰动法的基本原理李雅普诺夫运动稳定性理论:任何一个系统,可以用下列参数的函数数发生了变化,其函数变为表示时,当因某种微小的扰动使其参若其所有参数的则认为微小增量能趋近于零(当微小扰动消失后),即该系统是稳定的。二、用小扰动法分析简单电力系统的静态稳定性1.系统的线性微分方程式(无阻尼的情形)同步发电机组受小扰动运动的二阶线性微分方程式: 第十章 电力系统的静态稳定性上式也称微振荡方程式。又可写成其特征方程式为解为与之对应的同步发电机组线性微分方程式的解为(10-12)2、判断系统的静态稳定性利用式(10-12)来判断简单电力系统的静态稳定性。(1) 非周期失去静态稳定性。当时,特征方程式有正负实根,此时 随增大而增大,关系曲线如图10-3(a)所示。(2) 周期性等幅振荡。在时,特证方程式只有共轭是一种静态稳定的临界状态,如图10-3(b)所示。 第十章 电力系统的静态稳定性负阻尼的增幅振荡。当发电机具有阻尼时,特征方程式的根是实部为正值的共轭复根,周期性地失去静态稳定 性,如图10-3(c)正阻尼的减幅振荡。当系统具有正阻尼时,特征方程式的根是实部为负值的共轭复根,周期性地保持静态稳定 性,如图10-3(d)(a)t00t(b)0t(d)0t(c)图10-3 电力系统静态稳定性的判定(a) 非周期性关系;(b)等幅振荡;(c)增幅振荡;(d)减幅振荡 第十章 电力系统的静态稳定性有阻尼的情形。阻尼功率单机-无穷大系统中发电机的功角特性稳态运行点(平衡点)所以 第十章 电力系统的静态稳定性在小扰动下将展开成泰勒级数,并略去高阶无穷小量,得为常数,所以即(近似线性化方程) 第十章 电力系统的静态稳定性特征方程特征根根据 的情形可得到系统稳定性的情形特征根为两个实数,此时必有特征根为一对共轭复数,此时必有 第十章 电力系统的静态稳定性系统稳定与否,取决于特征根的实部,也即的符号(正或负)。(1),负阻尼, ,方程的解为,负阻尼,,方程的解仍为上式,系统是静态不稳定。(2)稳定的。 第十章 电力系统的静态稳定性三、小扰动法理论的实质小扰动法是根据受扰动运动的线性化微分方程式组的特征方程式的根,来判断未受扰动的运动是否稳定的方法。如果特征方程式的根都位于复数平面上虚轴的左侧,未受扰动的运动是稳定运动;反之,只要有一个根位于虚轴的右侧,未受扰动的运动就是不稳定运动。 第十章 电力系统的静态稳定性习题10-14解 系统等值电路如图。 第十章 电力系统的静态稳定性第三节 调节励磁对电力系统静态稳定性的影响一、不连续调节励磁对静态稳定性的影响手动调节或机械调节器的励磁调节过程是不连续的,如图10-5所示。D C B AEG F(o )030P定值E q = 定值GUE qGU不连续调节励磁60 90 120 150 180(a)图10-5(b)(a)功-角特性曲线;(b)发电机端电压和空载电动势的变化E q 第十章 电力系统的静态稳定性运行点的转移,发电机端电压和空载电动势的变化将分别如图10-5(a)、(b)中的折线二、对电力系统静态稳定性的简单综述图10-8 调节励磁对静态稳定的影响0 acb(1)励磁不调节。如图10-8中a点 ed定值定值定值f励磁不连续调节。如图10-8中b点。励磁按某一个变量偏移调节。如图10-8中c点。

文档评论(0)

文档爱好者 + 关注
实名认证
文档贡献者

文档爱好者~

1亿VIP精品文档

相关文档