在时域、RF域和数字域中调试5G NR多通道系统.docVIP

在时域、RF域和数字域中调试5G NR多通道系统.doc

  1. 1、本文档共9页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
在时域、RF域和数字域中调试5G NR多通道系统 对工程师而言,使用一台仪器就能跨越多域(时域、频域及调制域)查看信号,并同时分析多个不同类型的测量,这在复杂的5G系统测试中非常实用,因为在5G系统中数字信号、模拟信号和RF信号彼此交互。 尽管5G系统开发时已经做了大量的工作,但科学家和工程师仍面临着许多挑战,包括: ·??eMBB (增强移动宽带)收发机实现问题,包括高效实现应用的信道编码(LDPC和Polar码)、收发机设计的能效、大尺寸FFT的OFDM和DFT扩展OFDM信号强大的同步方法。 ·??考察V2X和遥控通信系统使用的超可靠URLLC (超可靠低时延通信)传输方法,包括高效通信道编码、可靠的接入无线资源以及收发机设计。 ·??考虑收发机在 毫米波范围通信中实现的具体问题 ·??massive MIMO结构和算法 ·??mMTC (海量机器型通信,如物联网)使用的能效传输、同步和多种接入方法 ·??mMTC调制和编码 ·??感知无线电在5G中的应用 关联模拟信号、数字信号和RF信号的根本原因 5G系统综合依赖数字信号、模拟信号和RF信号。今天,RF功放同步、增益和定时特点测试必须与现代控制接口结合在一起,如采用MIPI的RF前端控制接口 (RFFE)。 能够跨多个域分析信号对查找干扰、毛刺、杂散信号、跌落及其他错误至关重要。 在本文中,我们将展示宽带RF放大器典型的5G系统调试和验证场景。 测试设置 为了展示使用多域示波器分析RF放大器性能的优势,我们使用泰克MSO6B系列示波器作为我们的采集硬件。 图1. MSO6B示波器安装了SignalVu-PC软件。 图2. 测试设备包括示波器、信号发生器、耦合器、电源和DUT。 我们的被测器件是Mini Circuits的GVA-123+,这是一种小型RF放大器,但它演示了用户设备和基站应用典型的测量问题。 我们配置泰克AWG70000B任意波形发生器作为我们的信号源,在3.5 GHz中心频率生成单个5G NR载波,带宽为100 MHz。它是一个上行信号,30 kHz副载波间隔(SCS),256-QAM,11.5 dB OFDM PAPR。 AWG调节为250 mV ~ 500 mV峰峰值信号,约为–11 ~ –17 dBm合成平均功率。 我们使用耦合器(ZDC-10-0123),在示波器通道1上捕获输入信号。吉时利源测量单元(SMU)为被测器件供电。 我们还在示波器通道6上增加了一只电流探头,测量放大器吸收的电流。 在MSO6B示波器上,我们运行SignalVu VSA软件,装有5G NR选配插件,我们把它配置成分析示波器通道1捕获的信号。 测量实例 作为实例,我们将看到放大器获得良好的读数,在RF输入上开始触发。 图3. 在这个测量中,星座图中显示的EVM与预期相符。 然后我们在引入干扰时会突然看到变化,我们捕捉到高失真时点,这是什么引起的呢? 图4. 在这个测量中,EVM高于预期。 在上面两个截屏中可以看到,星座图中的5G EVM在好和坏之间脉冲波动。我们可以看下功率相对于时间画面,也可以看到功率有时会跌落。 因此,我们看到所有RF域指标都显示出了问题,我们想进一步了解根本原因。 您怀疑这与电源有关,如果使用的是传统VSA,您会不知所措,只能不断地猜测。而MSO6B不同,它可以同时查看模拟信号、数字信号和RF信号,所以我们可以关联到根本原因。 如果我们看一下通道6上测量信号的电流探头和通道5上的RF输出,我们可以看到电流在周期性下跌。 图5. 在这个采集中,电源传送48 mA (通道6, 蓝色),功放的输出(通道5, 橙色)是标称值。 图6. 在这个采集中,电源传送22 mA (通道6, 蓝色),功放的输出(通道5, 橙色)已经下跌。 所以我们改变视角,在时域中触发电流,而不是在频域中触发RF脉冲。为此,我们将把触发源变成通道6上的电流探头,因为我们知道正确操作发生在47 mA,所以我们把触发点设置在43 mA,在下降时捕捉信号。我们设置成触发电流边沿,而不是脉冲。 图7. 触发设置成捕获电流下降,以统一采集低电流情况。 现在我们把RF下跌原因与示波器关联起来,在返回SignalVu时,我们现在可以捕捉电流开始下跌的时点。 图8. 在触发低电流情况时,我们在星座图中一直看到高EVM。 这里,我们看到电流与示波器屏幕上的RF性能的跌落完美相关。这足可以确认,我们已经触发电流下跌,不再会有闪烁的星座图或EVM画面,我们可以更好地看到实际问题。您可以看到,我们的EVM一直很差,因为我们已经触发了故障时点。 现在我们看一下在电流落在规范内时是否触发,看一下RF测量会发生什么情况。为此,我们只需把触发方向变成上升,现在可以捕获电流落在规范内的时点。在示波器应用中,

文档评论(0)

150****6040 + 关注
实名认证
文档贡献者

互联网产品运营推广以及k12教育内容。

认证主体汤**

1亿VIP精品文档

相关文档

相关课程推荐