- 1、本文档共11页,其中可免费阅读10页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明公开了一种基于元学习的大规模多标签文本分类方法,主要包括:使用采样策略从训练集中采样获得若干样本,形成若干子任务,基于采样获得的若干子任务让模型进行元学习,元学习后的模型在原始数据集上使用监督学习方法进行微调,使得模型的性能进一步提升。本方法将大规模多标签文本分类问题转化为一个元学习问题,通过构造大量含有少样本和零样本标签的多标签文本分类子任务并优化模型在这些任务上的泛化误差,让模型能够显式的学习如何更好的预测那些少样本和零样本标签。
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113705215 A
(43)申请公布日 2021.11.26
(21)申请号 202110996966.5
(22)申请日 2021.08.27
(71)申请人 南京大学
地址 21
文档评论(0)