- 1、本文档共17页,其中可免费阅读16页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明提供一种航天器太阳电池阵发电电流预测模型训练方法、异常检测方法、设备及介质。通过训练多个LS‑SVM基模型,利用各个基模型在验证集上的预测精度计算基模型权重,通过加权得到集成LS‑SVM预测模型,作为最终训练好的太阳电池阵发电电流预测模型。获取航天器太阳电池阵发电电流的实际值与太阳电池阵发电电流预测模型所预测出的期望值之间的偏差;设定关于偏差的异常判定准则,基于偏差检测太阳电池阵是否出现异常。本发明能更好的处理航天器遥测数据的预测问题。
(19)中华人民共和国国家知识产权局
(12)发明专利
(10)授权公告号 CN 113283113 B
(45)授权公告日 2022.04.15
(21)申请号 202110656835.2 G06Q 10/04 (2012.01)
(22)申请日
文档评论(0)