- 1、本文档共8页,其中可免费阅读7页,需付费10金币后方可阅读剩余内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 4、文档侵权举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
本发明涉及图神经网络技术领域,具体涉及一种基于知识蒸馏的可解释图神经网络表示方法,该方法包括:将图数据输入教师网络,在教师网络中得到概率向量作为软目标;通过温度T将教师网络得到的软目标蒸馏转移到学生网络中,使用软目标以全局近似的方式帮助学生网络学习向量表示;学生网络将节点不同邻居中的关键信息节点进行聚合,得到聚合后的学生网络的软预测向量、硬预测向量以及最终节点表示向量和形成的可解释结果。本发明具有良好的网络表示能力和解释能力,不仅能够有效的表示节点以适用各项下游任务,同时还能够解释得到的表示结果
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 CN 113095480 A
(43)申请公布日 2021.07.09
(21)申请号 202110312058.X
(22)申请日 2021.03.24
(71)申请人 重庆邮电大学
地址
文档评论(0)