- 1、本文档共153页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Outline
The generalization to three dimensions is straight -forward. Schr?dinger’s equation says where the Hamiltonian operator H is obtained from the classical energyby the standard prescription (applied now to y and z, as well as x):
orfor short. Thus, Schr?dinger’s equation [4.1] becomesis the Laplacian, in Cartesian coordinates.
The potential energy V and the wave function ? are now functions of r = (x, y, z) and t. The probability of finding the particle in infinitesimal volume d3r = dxdydz is |?(r,t)|2d3r. with the integral taken over all space. If the potential is independent of time, there will be a complete set of stationary states, The normalization condition of the wave function reads
where the spatial wave function ?n satisfies the time-independent Schr?dinger equation; The general solution to the (time-dependent) Schr?dinger equation iswith the constant cn determined by the initial wave function, ?(r,0), in the usual way. If the potential admits continuum state, then the sum in Eq.[4.9] becomes an integral.
Typically, the potential is a function only of the distance from the origin, i.e. V(r, ? , ?)= V(r) . In that case it is natural to adopt spherical coordinates, (r, ?, ?) (see Figure 4.1).
In spherical coordinates the Laplacian takes the form In spherical coordinates, then, the time-independent Schr?dinger equation reads
We begin by looking for solutions that are separable into products:Putting this into Eq.[4.14], we have
Dividing by (YR) and multiplying by -2mr2/?2 The term in the first curly bracket depends only on r, whereas the remainder depends only on ? and ?; accordingly, each must be a constant. For reasons that will appear in due course, we will write this “separation constant” in the form l(l+1).
NOTE: Eqs. [4.16] and [4.17] are equal to the time-independent Schr?dinger equation [4.14] !
Eq.[4.17] determines the dependence of ? on ? and ? ; multiplying
文档评论(0)