张禾瑞高等代数.pptx

  1. 1、本文档共91页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
会计学;伟大的数学家,诸如阿基米得、牛顿和高斯等,都把理论和应用视为同等重要而紧密相关。 ——克莱因(Klein F,1849-1925);4.1 消元法; 前一章中我们只讨论了这样的线性方程组,这种方程组有相等个数的方程和未知量,并且方程组的系数行列式不等于零,在这一章我们要讨论一般的线性方程组:;例1 解线性方程组:;得到: ;;①交换两个方程的位置; ②用一个不等于零的数某一个方程; ③用一个数乘某一个方程后加到另一个方程. ;线性方程组的(1)的系数可以排成下面的一个表:;矩阵的初等变换;矩阵(3)和(4)分别叫作线性方程组(1)的系 数矩阵和增广矩阵. 一个线性方程组的增广矩阵显 然完全代表这个方程组. ;显然,对一个线性方程组施行一个初等变换,相当于对它的增广矩阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵. 因此我们将要通过化简矩阵来讨论化简方程组的问题.下我们给出一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次把未知量写出. ;在例1中,我们曾把方程组(2)的系数矩阵 ;通过行初等变换和第一种列初等变换能把A化为 以下形式:;; 乘第一行,然后由其余各行分别减去第一行的适 当倍数,矩阵A化为;那么B 已有(5)的形式. 设B 的后m – 1 行中有 一个元素b 不为零,把b 换到第二行第二列的 交点位置,然后用上面同样的方法,可把B 化为;显然的. 只要把由第一,第二,…,第r – 1 行 分别减去第r 行的适当倍数,再由第一,第二,…, 第r – 2行分别减去第r – 1行的适当倍数,等等. ;用消元法解线性方程组;与(7)相当的线性方程组是;由于方程组(8)可以由方程组(1)通过方程组的初等变换以及交换未知量的位置而得到,所以由定理,方程组(8)与方程组(1)同解. 因此,要解方程组(1),只需解方程组(8). 但方程组(8)是否有解以及有怎样的解都容易看出. ;情形2,;当r n 时,方程组(9)可以改写成 ;;叫做自由未知量,而把(10)叫做方程组(1)的 一般解. ; ;由第二行减去第三行的2倍,得 ;例3 解线性方程组 ;;;;4.2.1 k阶子??、 矩阵秩的定义 用初等变换求矩阵的秩 ;;;矩阵的秩 利用一个矩阵的元素可以构成一系列的行列式. ;定义2 一个矩阵中不等于零的子式的最大阶数叫做这个矩阵的秩. 若一个矩阵没有不等于零的子式,就认为这个矩阵的秩是零. 按照定义,一个矩阵的秩的不能超过这个矩阵的行的个数,也不能超过它的列的个数. 一个矩阵A的秩用秩A来表示. 显然,只有当一个矩阵的元素都为零是,这个矩阵的秩才能是零.;证明 我们先说明以下事实:若是对一个矩阵A施行某一行或列的初等变换而等到矩阵B,那么对B施行同一种初等变换又可以得到A. 事实上,若是交换A的第i行与第j行而得到B,那么交换B 的第i行与第j列就得到A;若是把A的第i行乘以一不等于零的数a而得到B,那么将B的第i行乘以1/a就又可以得到A;若是把A的第j行乘以数k加到第i行得到B,那么B的第j行乘以 – k加到第i行就得到A. 列的初等变换的情形显然完全一样. 现在我们就用第三种行初等变换来证明定理. ;;;;但我们也可以对矩阵B 施行第三种行初等变换而得到 矩阵A. 因此,也有;;4.2.2 线性方程组可解的判别法;;故定理得证. ;1.内容分布 4.3.1 线性方程组的公式解 4.3.2 齐次线性方程组及其非零解的概念 4.3.3 齐次线性方程组有非零解的条件 2.教学目的 1)会用公式解法解线性方程组 2)掌握齐次线性方程组有非零解的充要条件 3.重点难点 齐次线性方程组有非零解的充要条件;4.3.1 线性方程组的公式解;那么在这三个方程间有以下关系:;;;;看作是未知量,而来证明线;; 假定方程组(1)满足定理4.3.1的条件,于是由定理4.3.1,解方程组(1),只需解方程组(3)。我们分别看 的情形。;;;这里 都是可以由方程组(1)的系数和常数项表示的数。现仍旧把(6)中 看成未知量,那么(6)是一个线性方程组,从以上的讨论容易看出,方程组(6)与方程组(3’)同解,因而和方程组(1)同解。正如用消元法解线性方程组的情形一样,方程组(6)给出方程组(1)的一般解,而 是自由未知量,要求方程组(1)的一个解,只需给予自由未知量 任意一组数值,然后由(6)算出未知量

文档评论(0)

kuailelaifenxian + 关注
官方认证
内容提供者

该用户很懒,什么也没介绍

认证主体太仓市沙溪镇牛文库商务信息咨询服务部
IP属地上海
统一社会信用代码/组织机构代码
92320585MA1WRHUU8N

1亿VIP精品文档

相关文档