神经网络 习题.docxVIP

神经网络 习题.docx

此“教育”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、本文档共1页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
神经网络识别方法-习题6 习题6-1 P = [0 1 2 3 4 5 6 7 8 9 10]; T = [0 1 2 3 4 3 2 1 2 3 4]; net = newff([0 10],[5 1],{tansig purelin}); net.trainparam.show=50; %每次循环50次 net.trainParam.epochs = 500; %最大循环500次 net.trainparam.goal=0.01; %期望目标误差最小值 net = train(net,P,T); %对网络进行反复训练 Y = sim(net,P) plot(P,T,P,Y,o) 习题6-2 P= [ 0.5152 0.8173 1.0000 ; 0.8173 1.0000 0.7308 ; 1.0000 0.7308 0.1390 ; 0.7308 0.1390 0.1087 ; 0.1390 0.1087 0.3520 ; 0.1087 0.3520 0.0000;]; T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761]; %以第四个月的销售量归一化处理后作为目标向量 net=newff([0 1;0 1;0 1],[5,1],{tansig,logsig},traingd); net.trainParam.epochs=15000; net.trainParam.goal=0.01; net=train(net,P,T); Y = sim(net,P) plot(P,T,P,Y,o)

文档评论(0)

faith& + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档