- 1、本文档共50页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
数据结构习题及解答
第 1 章 概述
【例 1-1 】分析以下程序段的时间复杂度。
for(i=0;in;i++)
for(j=0;jm;j++)
A[i][j]=0;
解:该程序段的时间复杂度为 O(m*n) 。
【例 1-2 】分析以下程序段的时间复杂度。
i=s=0; ①
while(sn)
{ i++; ②
s+=i; ③
}
解:语句①为赋值语句,其执行次数为 1 次,所以其时间复杂度为 O(1) 。语句②和语
句③构成 while 循环语句的循环体, 它们的执行次数由循环控制条件中 s 与 n 的值确定。 假
定循环重复执行 x 次后结束, 则语句②和语句③各重复执行了 x 次。其时间复杂度按线性
累加规则为 O(x) 。此时 s 与 n 满足关系式: s ≥n ,而 s=1+2+3+ …+x 。所以有: 1+2+3+… +x
≥n ,可以推出:
1 1 8n 1 1
2n
2 2 4
x=
x 与 n 之间满足 x=f( n ),所以循环体的时间复杂度为 O( n ) ,语句①与循环体由线
性累加规则得到该程序段的时间复杂度为 O( n )。
【例 1-3 】分析以下程序段的时间复杂度。
i=1; ①
while(i=n)
i=2*i; ②
解:其中语句①的执行次数是 1,设语句②的执行次数为 f(n) ,则有: 2 f ( n) n 。
得: T (n)=O( log2 n )
【例 1-4 】有如下递归函数 fact(n) ,分析其时间复杂度。
fact(int n)
{ if(n=1)
return(1); ①
else
return(n*fact(n-1)); ②
}
解:设 fact (n)的运行时间函数是 T(n) 。该函数中语句①的运行时间是 O(1) ,语句
②的运行时间是 T(n-1)+ O(1) ,其中 O(1) 为常量运行时间。
由此可得 fact (n)的时间复杂度为 O(n) 。
习题 1
一、单项选择题
1. 数据结构是指( 1. A )。
A. 数据元素的组织形式 B. 数据类型
C.数据存储结构 D. 数据定义
2. 数据在计算机存储器内表示时,物理地址与逻辑地址不相同的,称之为( 2. C )。
A. 存储结构 B. 逻辑结构
C.链式存储结构 D. 顺序存储结构
3. 树
文档评论(0)