人教版初一数学下册:《平面直角坐标系》全章复习与巩固(提高)知识讲解.docVIP

人教版初一数学下册:《平面直角坐标系》全章复习与巩固(提高)知识讲解.doc

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE 《平面直角坐标系》全章复习与巩固(提高)知识讲解 【学习目标】 1. 理解平面直角坐标系及象限的概念,并会在坐标系中根据点的坐标描出点的位置、由点的位置写出它的坐标; 2. 掌握用坐标系表示物体位置的方法及在物体平移变化前后点坐标的变化; 3. 通过学习平面直角坐标系的基础知识,逐步理解平面内的点与有序实数对之间的一一对应关系,进而培养数形结合的数学思想. 【知识网络】 【要点梳理】 要点一、有序数对 把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号. 要点二、平面直角坐标系 在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图: 要点诠释: (1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点. (2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化. (3)要熟记坐标系中一些特殊点的坐标及特征: ① x轴上的点纵坐标为零;y轴上的点横坐标为零. ② 平行于x轴直线上的点横坐标不相等,纵坐标相等; 平行于y轴直线上的点横坐标相等,纵坐标不相等. ③ 关于x轴对称的点横坐标相等,纵坐标互为相反数; 关于y轴对称的点纵坐标相等,横坐标互为相反数; 关于原点对称的点横、纵坐标分别互为相反数. ④ 象限角平分线上的点的坐标特征: 一、三象限角平分线上的点横、纵坐标相等; 二、四象限角平分线上的点横、纵坐标互为相反数. 注:反之亦成立. (4)理解坐标系中用坐标表示距离的方法和结论: ① 坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|. ② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1 - x2|; y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1 - y2|. ③ 平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1 - x2|; 平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1 - y2|. (5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补 要点三、坐标方法的简单应用 1.用坐标表示地理位置 (1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称. 要点诠释: (1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置. (2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度. 2.用坐标表示平移 (1)点的平移 点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)). 要点诠释: 上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换. (2)图形的平移 在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度. 要点诠释: 平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”. 【典型例题】 类型一、有序数对 1.(巴中)如图所示,用点A(3,1)表示放置3个胡萝卜、1棵青菜,用点B(2,3)表示放置2个胡萝卜,3棵青菜. (1)请你写出点C、D、E、F所表示的意义; (2)若一只兔子从点A到达点B(顺着方格线走),有以下几条路线可以选择:①A→C→D→B;

您可能关注的文档

文档评论(0)

封样的男子245 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档