第4章圆与方程3.示范教案(4.2.1 直线与圆的位置关系)高中数学必修2教师教案.docVIP

第4章圆与方程3.示范教案(4.2.1 直线与圆的位置关系)高中数学必修2教师教案.doc

  1. 1、本文档共7页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系 整体设计 教学分析 学生在初中的学习中已了解直线与圆的位置关系,并知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系,但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现.在高一学习了解析几何以后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法.解决问题的方法主要是几何法和代数法.其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系从而作出判断.适可而止地引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”.含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度地引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度.虽然学生学习解析几何了,但把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质. 三维目标 1.理解直线与圆的位置关系,明确直线与圆的三种位置关系的判定方法,培养学生数形结合的数学思想. 2.会用点到直线的距离来判断直线与圆的位置关系及会利用直线与圆的位置关系解决相关的问题,让学生通过观察图形,明确数与形的统一性和联系性. 重点难点 教学重点:直线与圆的位置关系的几何图形及其判断方法. 教学难点:用坐标法判断直线与圆的位置关系. 课时安排 2课时 教学过程 第1课时 导入新课 思路1.平面解析几何是高考的重点和热点内容,每年的高考试题中有选择题、填空题和解答题,考查的知识点有直线方程和圆的方程的建立、直线与圆的位置关系等,本节主要学习直线与圆的关系. 思路2.(复习导入) (1)直线方程Ax+By+C=0(A,B不同时为零). (2)圆的标准方程(x-a)2+(y-b)2=r2,圆心为(a,b),半径为r. (3)圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为(-,-),半径为. 推进新课 新知探究 提出问题 ①初中学过的平面几何中,直线与圆的位置关系有几类? ②在初中,我们怎样判断直线与圆的位置关系呢? ③如何用直线与圆的方程判断它们之间的位置关系呢? ④判断直线与圆的位置关系有几种方法?它们的特点是什么? 讨论结果:①初中学过的平面几何中,直线与圆的位置关系有直线与圆相离、直线与圆相切、直线与圆相交三种. ②直线与圆的三种位置关系的含义是: 直线与圆的位置关系 公共点个数 圆心到直线的距离d与半径r的关系 图形 相交 两个 d<r 相切 只有一个 d=r 相离 没有 d>r ③方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. ④直线与圆的位置关系的判断方法: 几何方法步骤: 1°把直线方程化为一般式,求出圆心和半径. 2°利用点到直线的距离公式求圆心到直线的距离. 3°作判断:当d>r时,直线与圆相离;当d=r时,直线与圆相切;当d<r时,直线与圆相交. 代数方法步骤: 1°将直线方程与圆的方程联立成方程组. 2°利用消元法,得到关于另一个元的一元二次方程. 3°求出其判别式Δ的值. 4°比较Δ与0的大小关系,若Δ>0,则直线与圆相离;若Δ=0,则直线与圆相切;若Δ<0,则直线与圆相交.反之也成立. 应用示例 思路1 例1 已知直线l:3x+y-6=0和圆心为C的圆x2+y2-2y-4=0,判断直线l与圆的位置关系.如果相交,求出它们的交点坐标. 活动:学生思考或交流,回顾判断的方法与步骤,教师引导学生考虑问题的思路,必要时提示,对学生的思维作出评价;方法一,判断直线l与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据圆心到直线的距离与半径长的关系判断直线与圆的位置关系. 解法一:由直线l与圆的方程,得 消去y,得x2-3x+2=0,因为Δ=(-3)2-4×1×2=1>0,所以直线l与圆相交,有两个公共点. 解法二:圆x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心C的坐标为(0,1),半径长为,圆心C到直线l的距离d==<.所以直线l与圆相交,有两个公共点. 由x2-3x+2=0,得x1=2,x2=1.把x1=2代入方程①,得y1=0;把x2=1代入方程①,得y2=3.所以直线l与圆相交有两个公共点,它们的坐标分别是(2,0)和(1,3). 点评:比较两种解法,我们可以看出,几何法判断要比代数法判断快得多,但是若要求交点,仍需联立方程

文档评论(0)

文海网络科技 + 关注
官方认证
服务提供商

专业从事文档编辑设计整理。

认证主体邢台市文海网络科技有限公司
IP属地河北
统一社会信用代码/组织机构代码
91130503MA0EUND17K

1亿VIP精品文档

相关文档