- 1、本文档共3页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
3.3.2 两点间的距离
整体设计
教学分析
距离概念,在日常生活中经常遇到,学生在初中平面几何中已经学习了两点间的距离、点到直线的距离、两条平行线间的距离的概念,到高一立体几何中又学习了异面直线距离、点到平面的距离、两个平面间的距离等.其基础是两点间的距离,许多距离的计算都转化为两点间的距离.在平面直角坐标系中任意两点间的距离是解析几何重要的基本概念和公式.到复平面内又出现两点间距离,它为以后学习圆锥曲线、动点到定点的距离、动点到定直线的距离打下基础,为探求圆锥曲线方程打下基础.
解析几何是通过代数运算来研究几何图形的形状、大小和位置关系的,因此,在学习解析几何时应充分利用“数形”结合的数学思想和方法.
在此之前,学生已学习了直线的方程、两直线的交点坐标,学习本节的目的是让学生知道平面坐标系内任意两点距离的求法公式,以及用坐标法证明平面几何问题的知识,让学生体会到建立适当坐标系对于解决问题的重要性.
课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动地发现问题、解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,下的教学方法:主要是引导发现法、探索讨论法、讲练结合法.
三维目标
1.使学生掌握平面内两点间的距离公式及其推导过程;通过具体的例子来体会坐标法对于证明简单的平面几何问题的重要性.
2.能灵活运用此公式解决一些简单问题;使学生掌握如何建立适当的直角坐标系来解决相应问题,培养学生勇于探索,善于发现,独立思考的能力以及不断超越自我的创新品质.
重点难点
教学重点:①平面内两点间的距离公式.
②如何建立适当的直角坐标系.
教学难点:如何根据具体情况建立适当的直角坐标系来解决问题.
课时安排
1课时
教学过程
导入新课
思路1.已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|?
思路2.(1)如果A、B是x轴上两点,C、D是y轴上两点,它们的坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?(2)求B(3,4)到原点的距离.(3)设A(x1,y1),B(x2,y2),求|AB|.
推进新课
新知探究
提出问题
①如果A、B是x轴上两点,C、D是y轴上两点,它们坐标分别是xA、xB、yC、yD,那么|AB|、|CD|怎样求?
②求点B(3,4)到原点的距离.
③已知平面上的两点P1(x1,y1),P2(x2,y2),如何求P1(x1,y1),P2(x2,y2)的距离|P1P2|.
④同学们已知道两点的距离公式,请大家回忆一下我们怎样知道的(回忆过程).
讨论结果:①|AB|=|xB-xA|,|CD|=|yC-yD|.
②通过画简图,发现一个Rt△BMO,应用勾股定理得到点B到原点的距离是5.
③
图1
在直角坐标系中,已知两点P1(x1,y1)、P2(x2,y2),如图1,从P1、P2分别向x轴和y轴作垂线P1M1、P1N1和P2M2、P2N2,垂足分别为M1(x1,0)、N1(0,y1)、M2(x2,0)、N2(0,y2),其中直线P1N1和P2M2相交于点Q.
在Rt△P1QP2中,|P1P2|2=|P1Q|2+|QP2|2.
因为|P1Q|=|M1M2|=|x2-x1|,|QP2|=|N1N2|=|y2-y1|,
所以|P1P2|2=|x2-x1|2+|y2-y1|2.
由此得到两点P1(x1,y1)、P2(x2,y2)的距离公式:|P1P2|=.
④(a)我们先计算在x轴和y轴两点间的距离.
(b)又问了B(3,4)到原点的距离,发现了直角三角形.
(c)猜想了任意两点间距离公式.
(d)最后求平面上任意两点间的距离公式.
这种由特殊到一般,由特殊猜测任意的思维方式是数学发现公式或定理到推导公式、证明定理经常应用的方法.同学们在做数学题时可以采用!
应用示例
例1 如图2,有一线段的长度是13,它的一个端点是A(-4,8),另一个端点B的纵坐标是3,求这个端点的横坐标.
图2
解:设B(x,3),根据|AB|=13,
即(x+4)2+(3-8)2=132,解得x=8或x=-16.
点评:学生先找点,有可能找不全,丢掉点,而用代数解比较全面.也可以引至到A(-4,8)点距离等于13的点的轨迹(或集合)是以A点为圆心、13为半径的圆上与y=3的交点,应交出两个点.
例2 已知点A(-1,2),B(2,),在x轴上求一点,使|PA|=|PB|,并求|PA|的值.
解:设所求点P(x,0),于是有.
由|PA|=|PB|,得x2+2
您可能关注的文档
- 第3章不等式5.备课资料(3.3.doc
- 第3章不等式5.示范教案(3.3.doc
- 第3章不等式6.备课资料(3.4.1 基本不等式 的证明)高中数学必修5教师教案(47份).doc
- 第3章不等式6.示范教案(3.4.1 基本不等式 的证明)高中数学必修5教师教案(47份).doc
- 第3章不等式7.备课资料(3.4.2 基本不等式 的应用(一))高中数学必修5教师教案(47份).doc
- 第3章不等式7.示范教案(3.4.2 基本不等式 的应用(一))高中数学必修5教师教案(47份).doc
- 第3章概率1.示范教案(3.1.1 随机事件的概率)高中数学必修3教师教案.doc
- 第3章概率2.备课资料(3.1.2 概率的意义)高中数学必修3教师教案.doc
- 第3章概率2.示范教案(3.1.2 概率的意义)高中数学必修3教师教案.doc
- 第3章概率3.备课资料(3.1.3 概率的基本性质)高中数学必修3教师教案.doc
文档评论(0)