- 1、本文档共11页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第2课时 函数模型的应用举例
导入新课
思路1.(事例导入)
一辆汽车在水平的公路上匀加速行驶,初速度为v0,加速度为a,那么经过t小时它的速度为多少?在这t小时中经过的位移是多少?试写出它们函数解析式,它们分别属于那种函数模型?v=v0+at,s=v0t+at2,它们分别属于一次函数模型和二次函数模型.
不仅在物理现象中用到函数模型,在其他现实生活中也经常用到函数模型,今天我们继续讨论函数模型的应用举例.
思路2.(直接导入)
前面我们学习了函数模型的应用,今天我们在巩固函数模型应用的基础上进一步讨论函数拟合问题.
推进新课
新知探究
提出问题
①我市某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平稳增长.已知2000年为第一年,头4年年产量f(x)(万件)如下表所示:
x
1
2
3
4
f(x)
4.00
5.58
7.00
8.44
1°画出2000~2003年该企业年产量的散点图;建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.
2°2006年(即x=7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?
②什么是函数拟合?
③总结建立函数模型解决实际问题的基本过程.
讨论结果:①1°如图3-2-2-5,
设f(x)=ax+b,代入(1,4)、(3,7),得解得a=,b=.
∴f(x)=x+.
检验:f(2)=5.5,|5.58-5.5|=0.080.1;
f(4)=8.5,|8.44-8.5|=0.060.1.
∴模型f(x)=x+能基本反映产量变化.
2°f(7)=13,13×70%=9.1,2006年年产量应约为9.1万件.
图3-2-2-5
②函数拟合:根据搜集的数据或给出的数据画出散点图,然后选择函数模型并求出函数解析式,再进行拟合比较选出最恰当函数模型的过程.
③建立函数模型解决实际问题的基本过程为:
图3-2-2-6
应用示例
思路1
例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元.销售单价与日均销售量的关系如下表所示:
销售单价/元
6
7
8
9
10
11
12
日均销售量/桶
480
440
400
360
320
280
240
请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?
解:根据上表,销售单价每增加1元,日均销售量就减少40桶.设在进价基础上增加x元后,日均销售利润为y元,而在此情况下的日均销售量就为
480-40(x-1)=520-40x(桶).
由于x>0,且520-40x>0,即0<x<13,
于是可得
y=(520-40x)x-200=-40x2+520x-200,0<x<13.
易知,当x=6.5时,y有最大值.
所以,只需将销售单价定为11.5元,就可获得最大的利润.
变式训练
某工厂现有80台机器,每台机器平均每天生产384件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.
(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;
(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?
解:(1)设在原来基础上增加x台,则每台生产数量为384-4x件,机器台数为80+x,
由题意有y=(80+x)(384-4x).
(2)整理得y=-4x2+64x+30 720,
由y=-4x2+64x+30 720,得y=-4(x-8)2+30 976,
所以增加8台机器每天生产的总量最大,最大生产总量为30 976件.
点评:二次函数模型是现实生活中最常见数学模型.
例2某地区不同身高的未成年男性的体重平均值如下表:
身高∕cm
60
70
80
90
100
110
120
130
140
150
160
170
体重∕kg
6.13
7.90
9.99
12.15
15.02
17.50
20.92
26.86
31.11
38.85
47.25
55.05
(1)根据上表提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.
(2)若体重超过相同身高男性体重的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm,体重为78kg的在校男生的体重是否正常?
活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:
根据表的数据画出散点图.观察发现,这些点的连线是一条向上弯曲的曲线.根据这些点的分布情况,可以考虑用y=a·bx这一函数模型来近似刻画这个地区未成年男性体重
您可能关注的文档
- 第2章数列9.示范教案(2.5.doc
- 第2章统计1.示范教案(2.1.1 简单随机抽样)高中数学必修3教师教案.doc
- 第2章统计2.备课资料(2.1.2 系统抽样)高中数学必修3教师教案.doc
- 第2章统计2.示范教案(2.1.2 系统抽样)高中数学必修3教师教案.doc
- 第2章统计3.示范教案(2.1.3 分层抽样)高中数学必修3教师教案.doc
- 第2章统计4.备课资料(2.2.1 用样本的频率分布估计总体分布)高中数学必修3教师教案.doc
- 第2章统计4.示范教案(2.2.1 用样本的频率分布估计总体分布)高中数学必修3教师教案.doc
- 第2章统计5.示范教案(2.2.2 用样本的数字特征估计总体的数字特征)高中数学必修3教师教案.doc
- 第2章统计6.备课资料(2.3.2 两个变量的线性相关)高中数学必修3教师教案.doc
- 第2章统计6.示范教案(2.3.2 两个变量的线性相关)高中数学必修3教师教案.doc
文档评论(0)