第2章基本初等函数(1)2.示范教案(1.2 指数函数及其性质 第3课时).docVIP

第2章基本初等函数(1)2.示范教案(1.2 指数函数及其性质 第3课时).doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第3课时 指数函数及其性质(3) 导入新课 思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=ax与y=ax+m(a0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题:指数函数及其性质(3). 思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题也是我们本堂课要解决的问题——指数函数及其性质(3). 推进新课 新知探究 提出问题 (1)指数函数有哪些性质? (2)利用单调性的定义证明函数单调性的步骤有哪些? (3)对复合函数,如何证明函数的单调性? (4)如何判断函数的奇偶性,有哪些方法? 活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容. 讨论结果:(1)指数函数的图象和性质 一般地,指数函数y=ax在底数a>1及0<a<1这两种情况下的图象和性质如下表所示: a1 0a1 图象 图象特征 图象特征图象分布在一、二象限,与y轴相交,落在x轴的上方 都过点(0,1) 第一象限的点的纵坐标都大于1;第二象限的点的纵坐标都大于0且小于1 第一象限的点的纵坐标都大于0且小于1;第二象限的点的纵坐标都大于1 从左向右图象逐渐上升 从左向右图象逐渐下降 性质 (1)定义域:R (2)值域:(0,+∞) (3)过定点(0,1),即x=0时,y=1 (4)x0时,y1;x0时,0y1 (4)x0时,0y1;x0时,y1 (5)在R上是增函数 (5)在R上是减函数 (2)依据函数单调性的定义证明函数单调性的步骤是: ①取值.即设x1、x2是该区间内的任意两个值且x1<x2. ②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形. ③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论. ④判断.根据单调性定义作出结论. (3)对于复合函数y=f(g(x))可以总结为: 当函数f(x)和g(x)的单调性相同时,复合函数y=f(g(x))是增函数; 当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f(g(x))是减函数; 又简称为口诀“同增异减”. (4)判断函数的奇偶性: 一是利用定义法,即首先是定义域关于原点对称,再次是考察式子f(x)与f(-x)的关系,最后确定函数的奇偶性; 二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性. 应用示例 思路1 例1在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系. (1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2. 活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图. 解:(1)列出函数数据表作出图象如图2-1-2-12. x -3 -2 -1 0 1 2 3 2x 0.125 0.25 0.5 1 2 4 8 2x+1 0.25 0.5 1 2 4 8 16 2x+2 0.5 1 2 4 8 16 32 图2-1-2-12 比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象. (2)列出函数数据表作出图象如图2-1-2-13 x -3 -2 -1 0 1 2 3 2x 0.125 0.25 0.5 1 2 4 8 2x-1 0.625 0.125 0.25 0.5 1 2 4 2x-2 0.3125 0.625 0.125 0.25 0.5 1 2 图2-1-2-13 比较可知函数y=2x-1、y=2x-2与y=2x的图象的关系为:将指数函数y=2x的图象向右平行移动1个单位长度,就得到函数y=2x-1的图象;将指数函数y=2x的图象向右平行移动2个单位长度,就得到函数y=2x-2的图象. 点评:类似地,我们得到y=ax与y=ax+m(a0,a≠1,m∈R)之间的关系:

文档评论(0)

文海网络科技 + 关注
官方认证
服务提供商

专业从事文档编辑设计整理。

认证主体邢台市文海网络科技有限公司
IP属地河北
统一社会信用代码/组织机构代码
91130503MA0EUND17K

1亿VIP精品文档

相关文档