- 1、本文档共6页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2.2.2 平面与平面平行的判定
2.2.4 平面与平面平行的性质
整体设计
教学分析
空间中平面与平面之间的位置关系中,平行是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面平行的判定定理给出了由线面平行转化为面面平行的方法;面面平行的性质定理又给出了由面面平行转化为线线平行的方法,所以本节在立体几何中占有重要地位.本节重点是平面与平面平行的判定定理及其性质定理的应用.
三维目标
1.通过图形探究平面与平面平行的判定定理及其性质定理.
2.熟练掌握平面与平面平行的判定定理和性质定理的应用.
3.进一步培养学生的空间想象能力,以及逻辑思维能力.
重点难点
教学重点:平面与平面平行的判定与性质.
教学难点:平面与平面平行的判定.
课时安排
1课时
教学过程
导入新课
思路1.(情境导入)
大家都见过蜻蜓和直升飞机在天空飞翔,蜻蜓的翅膀可以看作两条平行直线,当蜻蜓的翅膀与地面平行时,蜻蜓所在的平面是否与地面平行?直升飞机的所有螺旋桨与地面平行时,能否判定螺旋桨所在的平面与地面平行?由此请大家探究两平面平行的条件.
思路2.(事例导入)
三角板的一条边所在直线与桌面平行,这个三角板所在的平面与桌面平行吗?三角板的两条边所在直线分别与桌面平行,情况又如何呢?下面我们讨论平面与平面平行的判定问题.
推进新课
新知探究
提出问题
①回忆空间两平面的位置关系.
②欲证线面平行可转化为线线平行,欲判定面面平行可如何转化?
③找出恰当空间模型加以说明.
④用三种语言描述平面与平面平行的判定定理.
⑤应用面面平行的判定定理应注意什么?
⑥利用空间模型探究:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么位置关系?
⑦回忆线面平行的性质定理,结合模型探究面面平行的性质定理.
⑧用三种语言描述平面与平面平行的性质定理.
⑨应用面面平行的性质定理的难点在哪里?
⑩应用面面平行的性质定理口诀是什么?
活动:先让学生动手做题后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.
问题①引导学生回忆两平面的位置关系.
问题②面面平行可转化为线面平行.
问题③借助模型锻炼学生的空间想象能力.
问题④引导学生进行语言转换.
问题⑤引导学生找出应用平面与平面平行的判定定理容易忽视哪个条件.
问题⑥引导学生画图探究,注意考虑问题的全面性.
问题⑦注意平行与异面的区别.
问题⑧引导学生进行语言转换.
问题⑨作辅助面.
问题⑩引导学生自己总结,把握面面平行的性质.
讨论结果:①如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.
如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.
两平面平行与相交的图形表示如图1.
图1
②由两个平面平行的定义可知:其中一个平面内的所有直线一定都和另一个平面平行.这是因为在这些直线中,如果有一条直线和另一平面有公共点,这点也必是这两个平面的公共点,那么这两个平面就不可能平行了.
另一方面,若一个平面内所有直线都和另一个平面平行,那么这两个平面平行,否则,这两个平面有公共点,那么在一个平面内通过这点的直线就不可能平行于另一个平面.
由此将判定两个平面平行的问题转化为一个平面内的直线与另一个平面平行的问题,但事实上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一平面,到底要多少条直线(且直线与直线应具备什么位置关系)与另一面平行,才能判定两个平面平行呢?
③如图2,如果一个平面内有一条直线与另一个平面平行,两个平面不一定平行.
图2
例如:AA′平面AA′D′D,AA′∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.
如图3,如果一个平面内有两条直线与另一个平面平行,两个平面也不一定平行.
图3
例如:AA′平面AA′D′D,EF平面AA′D′D,AA′∥平面DCC′D′,EF∥平面DCC′D′;但是,平面AA′D′D∩平面DCC′D′=DD′.
如图4,如果一个平面内有两条相交直线与另一个平面平行,则这两个平面一定平行.
图4
例如:A′C′平面A′B′C′D′,B′D′平面A′B′C′D′,A′C′∥平面ABCD,B′D′∥平面ABCD;直线A′C′与直线B′D′相交.
可以判定,平面A′B′C′D′∥平面ABCD.
④两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
以上是两个平面平行的文字语言,另外面面平行的判定定理的符号语言为:
若aα,bα,a∩b=A,且a∥α,b∥β,则α∥β.
图形语言为:如图5,
图5
⑤利用判定定理证明两个平面平行,必须具备:
(Ⅰ)有两条直线平行于另一
您可能关注的文档
- 第1章解三角形6.备课资料(1.2.doc
- 第1章解三角形8.备课资料(1.doc
- 第1章解三角形8.示范教案(1.doc
- 第1章空间几何体1.示范教案(1.1.1 柱、锥、台、球的结构特征)高中数学必修2教师教案.doc
- 第1章空间几何体2.备课资料(1.1.2 简单组合体的结构特征)高中数学必修2教师教案.doc
- 第1章空间几何体3.备课资料(1.2.2 空间几何体的三视图)高中数学必修2教师教案.doc
- 第1章空间几何体3.示范教案(1.2.2 空间几何体的三视图)高中数学必修2教师教案.doc
- 第1章空间几何体4.备课资料(1.2.3 空间几何体的直观图)高中数学必修2教师教案.doc
- 第1章空间几何体4.示范教案(1.2.3 空间几何体的直观图)高中数学必修2教师教案.doc
- 第1章空间几何体5.备课资料(1.3.1 柱体、锥体、台体的表面积与体积)高中数学必修2教师教案.doc
文档评论(0)