第1章集合与函数概念6.示范教案(3.1 单调性与最大(小)值 第1课时).docVIP

第1章集合与函数概念6.示范教案(3.1 单调性与最大(小)值 第1课时).doc

  1. 1、本文档共13页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
1.3 函数的基本性质 1.3.1 单调性与最大(小)值 整体设计 教学分析 在研究函数的性质时,单调性和最值是一个重要内容.实际上,在初中学习函数时,已经重点研究了一些函数的增减性,只是当时的研究较为粗略,未明确给出有关函数增减性的定义,对于函数增减性的判断也主要根据观察图象得出,而本小节内容,正是初中有关内容的深化和提高:给出函数在某个区间上是增函数或减函数的定义,明确指出函数的增减性是相对于某个区间来说的,还说明判断函数的增减性既有从图象上进行观察的较为粗略的方法,又有根据定义进行证明的较为严格的方法、最好根据图象观察得出猜想,用推理证明猜想的正确性,这样就将以上两种方法统一起来了. 由于函数图象是发现函数性质的直观载体,因此,在本节教学时可以充分使用信息技术创设教学情境,以利于学生作函数图象,有更多的时间用于思考、探究函数的单调性、最值等性质.还要特别重视让学生经历这些概念的形成过程,以便加深对单调性和最值的理解. 三维目标 1.函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛,学会运用函数图象理解和研究函数的性质. 2.理解并掌握函数的单调性及其几何意义,掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力. 3.通过实例,使学生体会、理解到函数的最大(小)值及其几何意义,能够借助函数图象的直观性得出函数的最值,培养以形识数的解题意识. 4.能够用函数的性质解决日常生活中的简单的实际问题,使学生感受到学习函数单调性的必要性与重要性,增强学生学习函数的紧迫感,激发学生学习的积极性. 重点难点 教学重点:函数的单调性和最值. 教学难点:增函数、减函数、奇函数、偶函数形式化定义的形成. 课时安排 2课时 设计方案(一) 教学过程 第1课时 函数的单调性 导入新课 思路1.德国有一位著名的心理学家名叫艾宾浩斯(Hermann Ebbinghaus,1850~1909),他以自己为实验对象,共做了163次实验,每次实验连续要做两次无误的背诵.经过一定时间后再重学一次,达到与第一次学会的同样的标准.他经过对自己的测试,得到了一些数据. 时间间隔t 0分钟 20分钟 60分钟 8~9小时 1天 2天 6天 一个月 记忆量y(百分比) 100% 58.2% 44.2% 35.8% 33.7% 27.8% 25.4% 21.1% 观察这些数据,可以看出:记忆量y是时间间隔t的函数.当自变量(时间间隔t)逐渐增大时,你能看出对应的函数值(记忆量y)有什么变化趋势吗?描出这个函数图象的草图(这就是著名的艾宾浩斯曲线).从左向右看,图象是上升的还是下降的?你能用数学符号来刻画吗?通过这个实验,你打算以后如何对待刚学过的知识?(可以借助信息技术画图象) 图1-3-1-1 学生:先思考或讨论,回答:记忆量y随时间间隔t的增大而增大;以时间间隔t为x轴,以记忆量y为y轴建立平面直角坐标系,描点连线得函数的草图——艾宾浩斯遗忘曲线如图1-3-1-1所示. 遗忘曲线是一条衰减曲线,它表明了遗忘的规律.随着时间的推移,记忆保持量在递减,刚开始遗忘速度最快,我们应利用这一规律,在学习新知识时一定要及时复习巩固,加深理解和记忆.教师提示、点拨,并引出本节课题. 思路2.在第23届奥运会上,中国首次参加就获15枚金牌;在第24届奥运会上,中国获5枚金牌;在第25届奥运会上,中国获16枚金牌;在第26届奥运会上,中国获16枚金牌;在第27届奥运会上,中国获28枚金牌;在第28届奥运会上,中国获32枚金牌.按这个变化趋势,2008年,在北京举行的第29届奥运会上,请你预测一下中国能获得多少枚金牌? 学生回答(只要大于32就可以算准确),教师:提示、点拨,并引出本节课题. 推进新课 新知探究 提出问题 ①如图1-3-1-2所示为一次函数y=x,二次函数y=x2和y=-x2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律? 图1-3-1-2 ②函数图象上任意点P(x,y)的坐标有什么意义? ③如何理解图象是上升的? ④对于二次函数y=x2,列出x,y的对应值表(1).完成表(1)并体会图象在y轴右侧上升. x -4 -3 -2 -1 0 1 2 3 4 f(x)=x2 表(1) ⑤在数学上规定:函数y=x2在区间(0,+∞)上是增函数.谁能给出增函数的定义? ⑥增函数的定义中,把“当x1x2时,都有f(x1)f(x2)”改为“当x1x2时,都有f(x1)f(x2)”,这样行吗? ⑦增函数的定义中,“当x1x2时,都有f(x1)f(x2)”反映了函数值有什么变化趋势?函数的图象有什么特点? ⑧增函数的几何意义是什么? ⑨类比增函数的定义,请给出减函

文档评论(0)

文海网络科技 + 关注
官方认证
服务提供商

专业从事文档编辑设计整理。

认证主体邢台市文海网络科技有限公司
IP属地河北
统一社会信用代码/组织机构代码
91130503MA0EUND17K

1亿VIP精品文档

相关文档