- 1、本文档共7页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第2课时 几类不同增长的函数模型
导入新课
思路1情景导入
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里的麦粒数都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g,据查,目前世界年度小麦产量为6亿吨,但不能满足发明者要求,这就是指数增长.本节我们讨论指数函数、对数函数、二次函数的增长差异.
思路2直接导入
我们知道,对数函数y=logax(a1),指数函数y=ax(a1)与幂函数y=xn(n0)在区间(0,+∞)上都是增函数.但这三类函数的增长是有差异的.本节我们讨论指数函数、对数函数、二次函数的增长差异.
推进新课
新知探究
提出问题
①在区间(0,+∞)上判断y=log2x,y=2x,y=x2的单调性.
②列表并在同一坐标系中画出三个函数的图象.
③结合函数的图象找出其交点坐标.
④请在图象上分别标出使不等式log2x2xx2和log2xx22x成立的自变量x的取值范围.
⑤由以上问题你能得出怎样结论?
讨论结果:
①在区间(0,+∞)上函数y=log2x,y=2x,y=x2均为单调增函数.
②见下表与图3-2-1-12.
x
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
y=2x
1.149
1.516
2
2.639
3.482
4.959
6.063
8
10.556
y=x2
0.04
0.36
1
1.96
3.24
4.84
6.67
9
11.56
y=log2x
-2.322
-0.737
0
0.485
0.848
1.138
1.379
1.585
1.766
图3-2-1-12
③从图象看出y=log2x的图象与另外两函数的图象没有交点,且总在另外两函数的图象的下方,y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16).
④不等式log2x2xx2和log2xx22x成立的自变量x的取值范围分别是(2,4)和(0,2)∪(4,+∞).
⑤我们在更大的范围内列表作函数图象(图3-2-1-13),
x
0
1
2
3
4
5
6
7
8
y=2x
1
2
4
8
16
32
64
128
256
y=x2
0
1
4
9
16
25
36
49
64
图3-2-1-13
容易看出:y=2x的图象与y=x2的图象有两个交点(2,4)和(4,16),这表明2x与x2在自变量不同的区间内有不同的大小关系,有时2xx2,有时x22x.
但是,当自变量x越来越大时,可以看到,y=2x的图象就像与x轴垂直一样,2x的值快速增长,x2比起2x来,几乎有些微不足道,如图3-2-1-14和下表所示.
x
0
10
20
30
40
50
60
70
80
y=2x
1
1024
1.05E+06
1.07E+09
1.10E+12
1.13E+15
1.15E+18
1.18E+21
1.21E+24
y=x2
0
100
400
900
1600
2500
3600
4900
6400
图3-2-1-14
一般地,对于指数函数y=ax(a1)和幂函数y=xn(n0),通过探索可以发现,在区间(0,+∞)上,无论n比a大多少,尽管在x的一定变化范围内,ax会小于xn,但由于ax的增长快于xn的增长,因此总存在一个x0,当xx0时,就会有axxn.
同样地,对于对数函数y=logax(a1)和幂函数y=xn(n0),在区间(0,+∞)上,随着x的增大,logax增长得越来越慢,图象就像是渐渐地与x轴平行一样.尽管在x的一定变化范围内,logax可能会大于xn,但由于logax的增长慢于xn的增长,因此总存在一个x0,当xx0时,就会有logaxxn.
综上所述,尽管对数函数y=logax(a1),指数函数y=ax(a1)与幂函数y=xn(n0)在区间(0,+∞)上都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a1)的增长速度越来越快,会超过并远远大于y=xn(n0)的增长速度,而y=logax(a1)的增长速度则会越来越慢.因此,总会存在一个x0,当xx0时,就会有logaxxnax.虽然幂函数y=xn(n0)增长快于对数函数y=logax(a1)增长,但它们与指数增长比起来相差甚远,因此指数增长又称“指数爆炸”.
应用示例
思路1
例1某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可
您可能关注的文档
- 第2章数列7.备课资料(2.4.doc
- 第2章数列7.示范教案(2.4.doc
- 第2章数列8.备课资料(2.5.doc
- 第2章数列8.示范教案(2.5.doc
- 第2章数列9.示范教案(2.5.doc
- 第2章统计1.示范教案(2.1.1 简单随机抽样)高中数学必修3教师教案.doc
- 第2章统计2.备课资料(2.1.2 系统抽样)高中数学必修3教师教案.doc
- 第2章统计2.示范教案(2.1.2 系统抽样)高中数学必修3教师教案.doc
- 第2章统计3.示范教案(2.1.3 分层抽样)高中数学必修3教师教案.doc
- 第2章统计4.备课资料(2.2.1 用样本的频率分布估计总体分布)高中数学必修3教师教案.doc
文档评论(0)