- 1、本文档共3页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
高一数学集体备课教案
教案使用教师____________
教案使用时间____________
课 题:3.1.2 概率的意义
教学目标:
1.正确理解概率的意义;利用概率知识正确理解现实生活中的实际问题.
2.通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
3.通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.
教学重点:
理解概率的意义.
教学难点:
用概率的知识解释现实生活中的具体问题.
教学方法:
讲授法
课时安排
1课时
教学过程:
一、导入新课:
生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”这是真的吗?为此我们必须学习概率的意义.
二、新课讲解:
1、提出问题:
(1)有人说,既然抛掷一枚硬币出现正面向上的概率为0.5,那么连续抛掷一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?
(2)如果某种彩票中奖的概率为,那么买1 000张彩票一定能中奖吗?
(3)在乒乓球比赛中,裁判员有时也用数名运动员伸出手指数的和的单数与双数来决定谁先发球,其具体规则是:让两名运动员背对背站立,规定一名运动员得单数胜,另一名运动员得双数胜,然后裁判员让两名运动员同时伸出一只手的手指,两个人的手指数的和为单数,则指定单数的运动员得到先发球权,若两个人的手指数的和为双数,则指定双数胜的运动员得到先发球权,你认为这个规则公平吗?
(4)“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了.”学了概率后,你能给出解释吗?
(5)阅读课本的内容了解孟德尔与遗传学.
(6)如果连续10次掷一枚骰子,结果都是出现1点.你认为这枚骰子的质地均匀吗?为什么?
2、讨论结果:
(1)这种想法显然是错误的,通过具体的试验可以发现有三种可能的结果:“两次正面朝上”“两次反面朝上”“一次正面朝上,一次反面朝上”,而且其概率分别为0.25,0.25,0.5.
(2)不一定能中奖,因为买1 000张彩票相当于做1 000次试验,因为每次试验的结果都是随机的,即每张彩票可能中奖也可能不中奖,因此,1 000张彩票中可能没有一张中奖,也可能有一张、两张乃至多张中奖.
(3)规则是公平的.
(4)天气预报的“降水”是一个随机事件,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的.
(5)奥地利遗传学家(G.Mendel,1822—1884)用豌豆进行杂交试验,下表为试验结果(其中F1为第一子代,F2为第二子代):
性状
F1的表现
F2的表现
种子的形状
全部圆粒
圆粒5 474
皱粒1 850
圆粒∶皱粒≈2.96∶1
茎的高度
全部高茎
高茎787
矮茎277
高茎∶矮茎≈2.84∶1
子叶的颜色
全部黄色
黄色6 022
绿色2 001
黄色∶绿色≈3.01∶1
豆荚的形状
全部饱满
饱满882
不饱满299
饱满∶不饱满≈2.95∶1
孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究,他发现了生物遗传的基本规律.实际上,孟德尔是从某种性状发生的频率作出估计的.
(6)利用刚学过的概率知识我们可以进行推断,如果它是均匀的,通过试验和观察,可以发现出现各个面的可能性都应该是,从而连续10次出现1点的概率为()10≈0.000 000 001 653 8,这在一次试验(即连续10次投掷一枚骰子)中是几乎不可能发生的.而当骰子不均匀时,特别是当6点的那面比较重时(例如灌了铅或水银),会使出现1点的概率最大,更有可能连续10次出现1点.
现在我们面临两种可能的决策:一种是这枚骰子的质地均匀,另一种是这枚骰子的质地不均匀.当连续10次投掷这枚骰子,结果都是出现1点,这时我们更愿意接受第二种情况:这枚骰子靠近6点的那面比较重.原因是在第二种假设下,更有可能出现10个1点.
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,例如对上述思考题所作的推断.这种判断问题的方法称为极大似然法.极大似然法是统计中重要的统计思想方法之一.
如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大.这种判断问题的方法称为似然法.似然法是统计中重要的统计思想方法之一.
三、例题讲解:
例1 为了估计水库中的鱼的尾数,可以使用以下的方法,先从水库中捕出一定数量的鱼,例
您可能关注的文档
- 第2章平面向量5.示范教案(2.3.2 平面向量的正交分解及坐标表示)高中数学必修4教师教案.doc
- 第2章平面向量6.备课资料(2.3.4 平面向量共线的坐标表示)高中数学必修4教师教案.doc
- 第2章平面向量6.示范教案(2.3.4 平面向量共线的坐标表示)高中数学必修4教师教案.doc
- 第2章平面向量7.备课资料(2.4.1 平面向量数量积的物理背景及其含义)高中数学必修4教师教案.doc
- 第2章平面向量7.示范教案(2.4.1 平面向量数量积的物理背景及其含义)高中数学必修4教师教案.doc
- 第2章平面向量8.示范教案(2.4.2 平面向量数量积的坐标表示、模、夹角)高中数学必修4教师教案.doc
- 第2章平面向量9.备课资料(2.5.1 平面几何中的向量方法)高中数学必修4教师教案.doc
- 第2章平面向量9.示范教案(2.5.1 平面几何中的向量方法)高中数学必修4教师教案.doc
- 第2章平面向量10.备课资料(2.5.2 向量在物理中的应用举例)高中数学必修4教师教案.doc
- 第2章平面向量10.示范教案(2.5.2 向量在物理中的应用举例)高中数学必修4教师教案.doc
文档评论(0)