第3章不等式6.备课资料(3.4.1 基本不等式 的证明)高中数学必修5教师教案(47份).docVIP

第3章不等式6.备课资料(3.4.1 基本不等式 的证明)高中数学必修5教师教案(47份).doc

  1. 1、本文档共1页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
备课资料 一、课外阅读 算术平均数不小于几何平均数的一种证明方法(局部调整法) (1)设a1,a2,a3,…,a n为正实数,这n个数的算术平均值记为A,几何平均值记为G,即,即A≥G,当且仅当a1=a2=…=an时,A=G.特别地当n=2时,,当n=3时,. (2)用局部调整法证明均值不等式A≥G.设这n个正数不全相等.不失一般性,设0<a1≤a2≤…≤a n,易证a 1<A<a n,且a1<G<an.在这n个数中去掉一个最小数a1,将a 1换成A,再去掉一个最大数an,将an换成a1+an-A,其余各数不变,于是得到第二组正数:A,a2,a3,…,a n-1,a1+a n-A.这一代换具有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A1,那么A1==A,②两组数的几何平均值最大.设第二组数的几何平均值为G1,则G1=∵A(a1+an-A)-a 1an=(A-a1)(a n-A),由a1<A<an,得(A-a1)(an-A)>0,则A(a1+an-A)>a1an.∴Aa 2a 3…a n-1(a1+a n-A)>a1a 2…an-1+a n.G1>G.若第二组数全相等,则A1=G 1,于是A=A1=G 1>G证明完毕.若第二组数不全相等,再作第二次替换.仍然是去掉第二组数中的最小数b1和最大数bn,分别用A1(即A)和b1+bn-A代替,因为有b1<A1<b n且A1=A.因而第二组数中的A不是最小数b1,也不是最大数bn,不在去掉之列,在替换中不会被换掉,而只会再增加,如此替换下去,每替换一次,新数中至少增加一个A,经过n-2次替换,新数中至少出现n-2个A,最多经过n-1次替换,得到一个全部是A的新数组.此时新数组的算术平均值等于几何平均值.在每次替换中,数组的算术平均值不变,始终等于A,而几何平均值不断增大,即G<G 1<G2<…<G k,而Gk=Ak=A,因而G≤A成立. 二、课外拓展 平均值不等式:平均不等式是最重要而基本的不等式之一,应用极其广泛,如能灵活运用,将产生意想不到的效果,这类试题在数学竞赛中经常出现.请同学们课后查找资料,阅读此四个不等式的证明过程. 平均值定理:设n个正数a1,a2,…,an,记 调和平均 几何平均, 算术平均, 平方平均. 这4个平均有如下关系:Hn≤Gn≤An≤Q n,等号成立的充要条件都是a1=a 2=…=a n.

您可能关注的文档

文档评论(0)

文海网络科技 + 关注
官方认证
服务提供商

专业从事文档编辑设计整理。

认证主体邢台市文海网络科技有限公司
IP属地河北
统一社会信用代码/组织机构代码
91130503MA0EUND17K

1亿VIP精品文档

相关文档