- 1、本文档共8页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
2.2 对数函数
2.2.1 对数与对数运算
整体设计
教学分析
我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.
教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.
三维目标
1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.
2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.
3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.
重点难点
教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.
教学难点:对数概念的理解,对数运算性质的推导及应用.
课时安排
3课时
教学过程
第1课时 对数与对数运算(1)
导入新课
思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?
2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?
抽象出:1.()4=?()x=0.125x=?
2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.
思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.
推进新课
新知探究
提出问题
(对于课本P572.1.2的例8)
①利用计算机作出函数y=13×1.01x的图象.
②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…?
③如果不利用图象该如何解决,说出你的见解?
即=1.01x,=1.01x,=1.01x,在这几个式子中,x分别等于多少?
④你能否给出一个一般性的结论?
活动:学生讨论并作图,教师适时提示、点拨.
对问题①,回忆计算机作函数图象的方法,抓住关键点.
对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.
对问题③,定义一种新的运算.
对问题④,借助③,类比到一般的情形.
讨论结果:①如图2-2-1-1.
图2-2-1-1
②在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.
③=1.01x,=1.01x,=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若=1.01x,则x称作以1.01为底的的对数.其他的可类似得到,这种运算叫做对数运算.
④一般性的结论就是对数的定义:
一般地,如果a(a0,a≠1)的x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.
有了对数的定义,前面问题的x就可表示了:
x=log1.01,x=log1.01,x=log1.01.
由此得到对数和指数幂之间的关系:
a
N
b
指数式ab=N
底数
幂
指数
对数式logaN=b
对数的底数
真数
对数
例如:42=162=log416;102=1002=log1010
您可能关注的文档
- 第1章三角函数3.示范教案(1.2.1 任意角的三角函数)高中数学必修4教师教案.doc
- 第1章三角函数4.备课资料(1.2.2 同角三角函数的基本关系)高中数学必修4教师教案.doc
- 第1章三角函数4.示范教案(1.2.2 同角三角函数的基本关系)高中数学必修4教师教案.doc
- 第1章三角函数5.备课资料(1.3 三角函数的诱导公式)高中数学必修4教师教案.doc
- 第1章三角函数5.示范教案(1.3 三角函数的诱导公式)高中数学必修4教师教案.doc
- 第1章三角函数6.示范教案(1.4.1 正弦函数、余弦函数的图象)高中数学必修4教师教案.doc
- 第1章三角函数7.示范教案(1.4.2 正弦函数、余弦函数的性质)高中数学必修4教师教案.doc
- 第1章三角函数8.备课资料(1.4.3 正切函数的性质与图象)高中数学必修4教师教案.doc
- 第1章三角函数8.示范教案(1.4.3 正切函数的性质与图象)高中数学必修4教师教案.doc
- 第1章三角函数9.备课资料(1.5 函数y=Asin(ωx+φ)的图象)高中数学必修4教师教案.doc
文档评论(0)