第一章 集合与常用逻辑用语、不等式:2022届一轮复习创新方案数学新高考版教案---2022届 一轮复习 创新方案 数学 新高考版.docVIP

第一章 集合与常用逻辑用语、不等式:2022届一轮复习创新方案数学新高考版教案---2022届 一轮复习 创新方案 数学 新高考版.doc

  1. 1、本文档共10页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第一章 集合与常用逻辑用语、不等式 第一节 集合 核心素养立意下的命题导向 1.与方程、函数、不等式等相结合考查集合元素的性质,凸显数学抽象的核心素养. 2.与不等式相结合考查集合的基本关系,凸显数学运算、逻辑推理的核心素养. 3.与不等式、数轴、Venn图等相结合考查集合的运算,凸显数学运算、直观想象的核心素养. [理清主干知识] 1.集合的有关概念 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b?A. (3)集合的表示方法:列举法、描述法、图示法. (4)五个特定的集合: 集合 自然数集 正整数集 整数集 有理数集 实数集 符号 N N*或N+ Z Q R 2.集合间的基本关系 表示 关系   文字语言 记法 集合间的基本关系 子集 集合A中任意一个元素都是集合B中的元素 A?B或B?A 真子集 集合A是集合B的子集,并且B中至少有一个元素不属于A AB或BA 相等 集合A中的每一个元素都是集合B中的元素,集合B中的每一个元素也都是集合A中的元素 A?B且B?A?A=B 空集 空集是任何集合的子集 ??A 空集是任何非空集合的真子集 ?B且B≠? 3.有限集的子集个数 设集合A是有n(n∈N*)个元素的有限集,即card(A)=n. (1)A的子集个数是2n; (2)A的真子集个数是 2n-1; (3)A的非空子集个数是2n-1; (4)A的非空真子集个数是2n-2. 4.集合的三种基本运算 符号表示 图形表示 符号语言 集合的 并集 A∪B A∪B={x|x∈A,或x∈B} 集合的 交集 A∩B A∩B={x|x∈A,且x∈B} 集合的 补集 若全集为U,则集合A的补集为?UA ?UA={x|x∈U,且x?A} 5.集合基本运算的性质 (1)A∩A=A,A∩?=?. (2)A∪A=A,A∪?=A. (3)A∩?UA=?,A∪?UA=U,?U(?UA)=A. (4)A?B?A∩B=A?A∪B=B??UA??UB?A∩(?UB)=?. [澄清盲点误点] 一、关键点练明 1.(集合的表示)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为(  ) A.9          B.8 C.5 D.4 答案:A 2.(并集与交集的运算)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x3},则(A∩C)∪B=(  ) A.{2} B.{2,3} C.{-1,2,3} D.{1,2,3,4} 答案:D 3.(全集与补集的运算)设全集为R,集合A={x|0x2},B={x|x1},则A∩(?RB)=(  ) A.{x|0x≤1} B.{x|0x1} C.{x|1≤x2} D.{x|0x2} 答案:C 4.(相等集合)设集合M={1,x,y},N={x,x2,xy},且M=N,则x2 021+y2 020=________. 答案:-1 二、易错点练清 1.(忽视元素的互异性)已知集合A={1,3,eq \r(m)},B={1,m},若B?A,则m=(  ) A.1 B.0或1或3 C.0或3 D.1或3 解析:选C 由B?A,得m=3或m=eq \r(m), 解m=eq \r(m),得m=0或m=1, 由集合元素的互异性知m≠1.∴m=0或3. 2.(忽视空集的情形)已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是(  ) A.-1 B.1 C.-1或1 D.0或1或-1 解析:选D 由M∩N=N,得N?M,当N=?时,a=0;当N≠?时,eq \f(1,a)=a,解得a=±1,故a的值为±1,0. 3.(忽视集合运算中端点取值)已知集合A={x|x≥3},B={x|x≥m},且A∪B=A,则实数m的取值范围是________. 解析:因为集合A={x|x≥3},B={x|x≥m},且A∪B=A,所以B?A,如图所示,所以m≥3. 答案:[3,+∞) 考点一 集合的基本概念 [典例] (1)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为(  ) A.9           B.8 C.5 D.4 (2)设A=eq \b\lc\{\rc\}(\a\vs4\al\co1(2,3,a2-3a,a+\f(2,a)+7)),B={|a-2|,3},已知4∈A且4?B,则a的取值集合为________. [解析] (1)将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A. (2)

文档评论(0)

文海网络科技 + 关注
官方认证
服务提供商

专业从事文档编辑设计整理。

认证主体邢台市文海网络科技有限公司
IP属地河北
统一社会信用代码/组织机构代码
91130503MA0EUND17K

1亿VIP精品文档

相关文档