- 1、本文档共3页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
§4.6探索三角形相似的条件(一)
教学目标:
使学生能通过三角形全等的判定来发现三角形相似的判定。
使学生掌握相似三角形判定定理1,并了解它的证明。
使学生初步掌握相似三角形的判定定理1的应用。
教学重点:
掌握相似三角形判定定理1及其应用。
教学难点
定理1的证明方法。
2.利用相似三角形的判定方法1进行有关计算及证明,训练学生的灵活运用能力.
教学过程
一、创设问题情境,引入新课
上节课我们学习了相似三角形的定义,即三角对应相等、三边对应成比例的两个三角形是相似三角形,同时这也是相似三角形的一种判定方法,即定义法.那么,除此之外,还有没有其他方法呢?本节课开始我们将进行这方面的探索.
二、讲授新课
在三角形中有六个元素,即三个角和三条边,要进行相似的判断,就是要看在这两个三角形中角或边需满足什么条件,两个三角形就相似,而在判断两个三角形全等时,也是讨论边、角关系的.下面我们先回忆一下全等三角形的判定方法,然后进行类比,好吗?
全等三角形的判定方法有:ASA,AAS,SAS,SSS,直角三角形除此之外再加HL.那么,相似三角形应该如何判断呢?
1.做一做.
(1)画一个△ABC,使得∠BAC=60°,与同伴交流,你们所画的三角形相似吗?
(2)与同伴合作,一人画△ABC,另一人画△A′B′C′,使得∠A和∠A′都等于给定的∠α,∠B和∠B′都等于给定的∠β,比较你们画的两个三角形,∠C与∠C′相等吗?对应边的比相等吗?这样的两个三角形相似吗?
改变∠α、∠β的大小,再试一试.
请大家按照要求动手画图,然后进行交流.
在(1)中,只有一对角相等,其他角和边没有确定,因此所画的三角形不相似.
根据(2)中的要求画出的三角形中,∠C与∠C′相等,对应边有,根据相似三角形的定义,这两个三角形相似.
改变∠α、∠β的大小,这个结论还不变.
大家的结论都是如此吗?从这两个小题中,大家能得出什么?
(1)题告诉我们,只满足一对角相等不能判定两个三角形相似.
从(2)中我们可知,如果两个三角形中有两对角对应相等,那么这两个三角形相似.
经过大家的探索,我们得出了判定方法1:
两角对应相等的两个三角形相似.
2.例题.
如图,D、E分别是△ABC边AB、AC上的点,DE∥BC.
(1)图中有哪些相等的角?
(2)找出图中的相似三角形,并说明理由;
(3)写出三组成比例的线段.
解:(1)
(3)△ADE∽△ABC.
3.想一想
在上面例题的条件下,吗?
解:成立.
由DE∥BC,得
根据比例基本性质得,
即
两边同时减去1,得
-1
即
三、课堂练习
1.随堂练习
(1)有一个锐角对应相等的两个直角三角形是否相似?为什么?
(2)顶角相等的两个等腰三角形是否相似?为什么?
2.补充练习
(1)已知△ABC与△A′B′C′中,∠B=∠B′=75°,∠C=50°,∠A′=55°,这两个三角形相似吗?为什么?
(2)已知一个三角形的两个角分别是70°和65°,你能画出和这个三角形相似的三角形吗?
四、课时小结
本节课主要探索了相似三角形的判定方法,即两角对应相等的两个三角形相似,并且利用这个判定方法进行有关证明和计算.
五、课后作业 习题4.7
六、活动与探究
如图:AD⊥BC于D,BE⊥AC于E,AD、BE相交于F,则图中相似三角形共有几对?它们分别是哪些?为什么?
解:图中相似三角形共有六对,它们分别是①△ADC∽△BEC,②△ADC∽△AEF,③△BEC∽△BDF,④△BDF∽△AEF,⑤△BDF∽△ADC,⑥△AEF∽△BEC.
∵AD⊥BC,BE⊥AC
∴∠ADB=∠ADC=∠AEB=∠CEB=90°
(1)在△ADC与△BEC中
∵∠ADC=∠BEC=90°
∠C=∠C
∴△ADC∽ △BEC
(2)在△ADC与△AEF中
∵∠ADC=∠AEF=90°
∠DAC=∠EAF
∴△ADC∽△AEF
(3)在△BEC与△BDF中
∵∠BEC=∠BDF=90°
∠EBC=∠DBF
∴△BEC∽△BDF.
(4)在△BDF和△AEF中
∵∠BDF=∠AEF=90°,
∠BFD=∠AFE
∴△BDF∽△AEF.
(5)由△BEC∽△ADC得∠DBF=∠DAC
∵∠BDF=∠ADC=90°
∴△BDF∽△ADC
(6)由△BEC∽△ADC,得∠EBC=∠EAF
∵∠AEF=∠BEC
∴△AEF∽△BEC
您可能关注的文档
最近下载
- 2024海南屯昌县总工会社会化工会工作者招聘3人 (第1号)笔试备考试题及答案解析.docx VIP
- 三年级数学上册人教版53全优卷.pdf
- (高清版)B-T 16886.11-2021 医疗器械生物学评价 第11部分:全身毒性试验.pdf VIP
- 水电站电气一次设计.docx VIP
- ICU患者血糖的管理.ppt VIP
- 光伏+储能 收益率最高的装机、储能测算.xls VIP
- 黑龙江省哈尔滨市巴彦县第一中学2022-2023学年七年级上学期期中考试语文试题(含答案).docx VIP
- 创新文物改编游戏企划书.pptx VIP
- 海尼曼 Fountas & Pinnell 有声绘本-英语入门066 The New Roof.pdf VIP
- 2021.4助理全科基层基地教学管理1.pptx VIP
文档评论(0)