- 1、本文档共44页,可阅读全部内容。
- 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
常用物流搬运设备概论.pptx
第三章 常用物流搬运设备;第一节 起重机 ;;固定式液压升降台是一种升降稳定性好,适用范围广的货物举升设备,主要用于生产流水线高度差之间货物运送;物料上线、下线;工件装配时调节工件高度;高处给料机送料;大型设备装配时部件举升;大型机床上料、下料;仓储装卸场所与叉车等搬运车辆配套进行货物快速装卸等。;桥吊是码头上用于将集装箱吊起进行装卸作业的起重机,是码头的心脏。桥吊作业能力决定着一个码头的货物吞吐能力。门机是在岸边装卸船舶货物所用的起重机。
???????
;?桥吊经历四代升级:第一代桥吊能吊起30.5吨的货物重量,起升高度可达18到20米,可向海面伸出28米远 ,采用电动机组发电机;第二代能吊起35.5吨重的货物,起升高度可达到25米,可向海面伸出40米远,采用可控硅直流调速系统;第三代能吊起50吨重货物,能升到32米高,可前伸出海50米,采用智能交流变频驱动控制系统;第四代能吊起70吨重货物,能升高42米,能前伸出70米远,采用智能交流变频驱动装置。
;梁式和桥式的区别;第二节 搬运车 ;叉车 ;叉车的主要类型;电瓶叉车和内燃机叉车比较表 ;叉车的主要技术性能指标如下: ;自动导引车 (AGV);AGV的发展现状
20世纪50年代中期,Barret公司设计出无人驾驶卡车,也就是AGV的最早雏形。后来,美国物料搬运研究所将其定义为AGV,它是可充电的无人驾驶小车,可根据路径和定位情况编程,而且行走的路线可以改变和扩展。据报导,到1960年时,欧洲就安装了各种型号不同水平的自动搬运车系统,使用了13,000多台AGV。1959年AGV开始用于仓库自动化和工厂作业中。日本也从这时开始引进AGV技术。日本是使用这种车辆最多的国家,在20世纪80年代末,拥有各种类型的自动搬运车超过一万台,其生产厂家达47家,广泛应用于汽车制造、机械、电子、钢铁、化工、医药、印刷、仓储、运输业和商业上。
20世纪70年代,AGV作为生产组成部分进入了生产系统,并得到了迅速发展。1973年,瑞典VOLVO公司在KALMAR轿车厂的装配线上大量采用了AGV进行计算机控制装配作业,扩大了AGV的使用范围;7.1.2 AGV在AS/RS中的作用
控制台通过计算机网络接受立体仓库管理系统下达的AGV输送任务,通过无线局域网通讯系统实时采集各AGV、拆箱机器人的状态信息。根据需求情况和当前AGV运行情况,将调度命令传递给选定的AGV。AGV完成一次运输任务,在托盘回收站待命,等待下次任务。
各立体库出货口和拆箱机器人处均有光导通讯装置。对运行中的AGV,控制台将通过无线局域网通讯系统与AGV交换信息,实现AGV问的避碰调度、工作状态检测、任务调度。在立体仓库和拆箱机器人处通过光导通讯与AGV交换任务和状态,完成移载。
自动导航系统完成AGV的导引。充电系统由充电器和充电控制器组成,完成在线快速自动充电。AGV接受控制台的任务,完成运输。地面移载设备可实现AGV的自动移载、加载、交换空托盘。下图为在青岛海尔自动化立体仓库中移载用的激光导引AGV。
;7.1.3 AGV的组成
AGV由以下各部分组成:车体、蓄电池、车上充电装置、控制系统、驱动装置、转向装置、精确定位装置、移载机构、通信单元和导引系统。
1.车体。 由车架和相应的机械电气结构如减速箱、电机、车轮等组成。车架常采用焊接钢结构,要求有足够的刚性。
2.蓄电池与充电装置。 常采用24V或48V直流工业蓄电池为动力。
3.驱动装置。 驱动装置是一个伺服驱动的变速控制系统,可驱动AGV运行并具有速度控制和制动能力。它由车轮、减速器、制动器、电机及速度控制器等部分组成,并由计算机或人工进行控制。速度调节可采用脉宽调速或变频调速等方法。直线行走速度可达1m/s,转弯时为0.2~0.5m/s,接近停位点时为0.1m/s。 ;4.转向装置。
AGV常设计成三种运动方式:只能向前;能向前与向后;能纵向、横向、斜向及回转全方位运动。转向装置的结构也有三种:
(1) 铰轴转向式三轮车型。 车体的前部为一个铰轴转向车轮,同时也是驱动轮。转向和驱动分别由两个不同的电动机带动,车体后部为两个自由轮,由前轮控制转向实现单方向向前行驶。其结构简单、成本低,但定位精度较低(见图5)。
(2) 差速转向式四轮车型。 车体的中部有两个驱动轮,由两个电机分别驱动。前后部各有一个转向轮(自由轮)。通过控制中部两个轮的速度比可实现车体的转向,并实现前后双向行驶和转向。这种方式结构简单,定位精度较高(见图6)。
(3)全轮转向式四轮车型。 车体的前后部各有两个驱动和转向一体化车轮,每个车轮分别由各自的电动机驱动,可实现沿纵向、横向、斜向和回转方向任意路线行走,控制较复杂,见图7。
;图5 铰轴转向式三轮车型;;5.控制系统。
文档评论(0)