陕西省师大附中第一次模拟考试.doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、原创力文档(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
学科网( w w w .z x x k .c o m ) 全国最大的教学资源网站! 北京凤凰学易科技有限公司 版权所有@学科网 陕西省师大附中2013届高三数学一模试题(文科) 第Ⅰ卷 选择题(共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若复数为纯虚数,则实数的值为 A.3 B.1 C.-3 D. 【答案】C 【解析】因为复数为纯虚数,所以,因此选C。 2.已知为不重合的两个平面,直线在平面内,则“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】A 【解析】因为直线在平面内,,所以面面垂直的判断定理得;若,则不一定成立,只有直线m垂直于平面的交线时,才能得到。 3.已知集合,,且,则实数的取值范围是 A. B. C. D. 【答案】C 【解析】集合 ,又,且,所以,所以,因此选C。 4.已知为等差数列,若,则的值为 A. B. C. D. 【答案】A 【解析】因为,所以,所以,因此选A。 5.若椭圆的离心率为,则双曲线的离心率为 A. B. C. D.2 【答案】B 【解析】因为若椭圆的离心率为,所以,所以,所以双曲线的离心率为。 6.函数(其中) 的图象如图所示,为了得到的图像, 则只需将的图像 A.向右平移个长度单位 B.向右平移个长度单位 C.向左平移个长度单位 D.向左平移个长度单位 【答案】A 【解析】法一:由图像易知:,所以 ,把点代入, 得,所以,把函数 向右平移个长度单位得到函数的 图像,因此选A。 法二:根据图像可知,函数的图像与x的负半轴最靠近原点的交点坐 标为,所以要得到函数的图像,则只需将的图像 向右平移 个长度单位。 7.已知直线与圆交于两点,且 (其中为坐标原点),则实数的值为 A. B. C.或 D.或 【答案】C 【解析】因为,所以以OA、OB为邻边做的平行四边形为正方形,即OA⊥OB,所以AB=2,即圆心到直线的距离为,所以。因此选C。 8.已知数列中,,,若利用如图所示的程序框图计算该数列的第10项的值,则判断框内的条件是 A. B. C. D. 【答案】B 【解析】通过分析,本程序框图为“当型“循环结构,判断框内为满足循环的条件, 第1次循环,S=S+n=1+1=2,n=1+1=2,此时计算的是该数列的第二项; 第2次循环,S=S+n=2+2=4,n=2+1=3,此时计算的是该数列的第三项; … 第9次循环,n=9+1=10,此时计算的是该数列的第10项; 所以,判断条件应为n≤9或n<10,故选B. 9.已知,则函数的零点个数为 A.1 B.2 C.3 D.4 【答案】D 【解析】函数的零点个数为函数和函数的图像交点的个数,在同一平面直角坐标系画出函数和函数的图像,由图像知当时,图像由4个交点,因此选D。 2 2 2 -2 -2 10.已知函数对任意都有,若的图象关于直线对称,且,则 A.2 B.3 C.4 D 【答案】A 【解析】因为,所以令x=0得:,因为 的图象关于直线对称,所以,所以 ………… = 1 \* GB3 ① 令x=-2,得………… = 2 \* GB3 ② = 1 \* GB3 ① = 2 \* GB3 ②联立解得,所以,所以函数的周期为4,所以 ,因此选A。 第Ⅱ卷 非选择题(共100分) 二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上. 11.曲线在点处的切线方程是,则____. 【答案】2 【解析】因为曲线在点处的切线方程是,所以,所以2. 12.设满足约束条件,则的最大值是_____________. 【答案】0 【解析】画出线性约束条件的可行域, 2 2 2 -2 A 由图知,目标函数过点A时取最大值,又得A(2,2),把点A的坐标代入得z的最大值为。 13.已知=2·,=3·, =4·,…. 若=8·(均为正实数),类比以上等式,可推测的值, 则= . 【答案】71 【解析】因为=2·,=3·,=4·,由类比推 理得:=5·,,所 以。 14.如图,一个空间几何

文档评论(0)

yjz0327 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档